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Abstract—Developers often seek solutions for their program-
ming problems by retrieving existing questions on technical
Q&A sites such as Stack Overflow. In many cases, they fail
to find relevant questions due to the knowledge gap between
the questions and the queries or feel it hard to choose the
desired questions from the returned results due to the lack
of explanations about the relevance. In this paper, we propose
KGXQR, a knowledge graph based explainable question retrieval
approach for programming tasks. It uses BERT-based sentence
similarity to retrieve candidate Stack Overflow questions that
are relevant to a given query. To bridge the knowledge gap and
enhance the performance of question retrieval, it constructs a
software development related concept knowledge graph and trains
a question relevance prediction model to re-rank the candidate
questions. The model is trained based on a combined sentence
representation of BERT-based sentence embedding and graph-
based concept embedding. To help understand the relevance of the
returned Stack Overflow questions, KGXQR further generates
explanations based on the association paths between the concepts
involved in the query and the Stack Overflow questions. The
evaluation shows that KGXQR outperforms the baselines in
terms of accuracy, recall, MRR, and MAP and the generated
explanations help the users to find the desired questions faster
and more accurately.

Index Terms—Relevant Question Retrieval, Stack Overflow,
Knowledge Graph

I. INTRODUCTION

Technical Q&A sites such as Stack Overflow (SO) play an
increasingly important role in software development [1], as
evidenced by over 19 million questions and 29 million answers
on SO [2]. When facing software programming problems such
as implementing specific functionalities or handling errors in
code developers often turn to SO for help [1], [3]. Before
asking new questions on SO, developers often tend to seek
existing questions that are relevant to their needs using the SO
search interface or search engines such as Google. However,
due to the gap between the queries and SO questions (usually
their titles), it is often hard for the developers to find the desired
questions and answers efficiently.

Existing researches use information retrieval (IR) and deep
learning techniques to retrieve or recommend SO questions that
are relevant to a given query [4], [5], [6], [7], [8]. Traditional IR
techniques such as TF-IDF [9] and BM25 [10] can efficiently
retrieve relevant questions that share common words with the
query. However, these approaches fail to address the problem
of the lexical gap, i.e., similar or relevant meaning expressed in

M. Liu, S. Yu, X. Peng, X. Du, T. Yang, H. Xu, and G. Zhang are with the
School of Computer Science and Shanghai Key Laboratory of Data Science,
Fudan University, China.

X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Fig. 1. An Example of Knowledge Gap between Questions

different words. Recently, some researches [6], [7], [8] use word
embedding techniques (e.g., Word2Vec [11] and Glove [12]) to
obtain the vector representations of words and sentences and
retrieve relevant questions based on the similarities between the
vector representations of the questions and the query. Word em-
bedding techniques capture the contexts of words in documents
and thus can address the lexical gap between SO questions and
queries. However, they cannot capture the semantic differences
of different sentence patterns, as they treat a sentence as a bag of
words. This shortcoming can be alleviated by using contextual
word embedding models such as BERT (Bidirectional Encoder
Representations from Transformers) [13]. However, in some
cases, there is a knowledge gap between the questions and
the query which needs to be bridged by relevant concepts and
relations. Moreover, the developers may require explanations
about the relevance of the returned SO questions to choose the
desired ones.

Figure 1 shows an example of the knowledge gap between
two SO questions (Q1 [14] and Q2 [15]). Both of them are
about sending emails in Java and the accepted answer to one
question can work for the other. The rectangles, ellipses, and
edges in the figure represent questions, concepts, and relations,
respectively. A dotted line indicates that a concept is mentioned
in the title of a question. It can be seen that Q1 and Q2 use
different terms for the need of sending email, i.e., “SMTP
message” and “email”, “Yahoo”, “Hotmail”, “Gmail”. The
gap between the different expressions of Q1 and Q2 needs to
be bridged by the background knowledge about the relations
between related concepts such as “SMTP”, “email”, “Yahoo”,
“Hotmail”, “Gmail”. These relations may be domain specific
and hard to be captured by word embedding models such as
Word2Vec or BERT. Moreover, the user often requires explicit
explanations about the relations to understand, for example,



Fig. 2. An Overview of KGXQR

how SMTP works and what alternative protocols can be used
for sending an email.

Based on the analysis, we propose KGXQR, a knowledge
graph based question retrieval approach for software program-
ming tasks. KGXQR employs BERT-based sentence similarity
to retrieve relevant SO questions for a given query. To bridge
the knowledge gap and enhance the performance of question
retrieval, it constructs a software development related concept
knowledge graph and trains a question relevance prediction
model to re-rank the candidate questions. The model is trained
based on a combined sentence representation of BERT-based
sentence embedding and graph-based concept embedding. To
help understand the relevance of the returned SO questions,
KGXQR further generates explanations based on the association
paths between the concepts involved in the query and the SO
questions.

We constructed a knowledge graph comprising 2,291,354
concepts and 4,220,946 relations for KGXQR. We evaluate
KGXQR using a benchmark consisting of three datasets,
including test data from a previous study, SO duplicate
question records, and SO title edit records. Experimental
results demonstrated that KGXQR surpassed two baselines
in terms of accuracy, recall, mean reciprocal rank (MRR), and
mean average precision (MAP). Moreover, a user study with
10 participants and 16 programming tasks showed that the
explanations provided by KGXQR can help them find answers
to their questions faster and more accurately.

To summarize, this paper makes the following contributions:
• Creation of a training dataset and a benchmark consisting

three test datasets for relevant question retrieval.
• Construction of a concept knowledge graph for software

development with 2,291,354 concepts and 4,220,946
relations.

• Proposal of KGXQR, a knowledge graph based explain-
able question retrieval approach for software development
that uses a retrieval and re-rerank pipeline.

II. APPROACH

As shown in Figure 2, KGXQR includes three phases, i.e.,
data construction, model training, and question retrieval.

Data Construction. In this phase, KGXQR constructs a
corpus of SO questions and answers (Q&A corpus), a training
dataset, and a knowledge graph. The Q&A corpus includes
high-quality Q&A pairs extracted from SO and provides the
basis for question retrieval. The training dataset includes pairs
of relevant and irrelevant question titles that are extracted from
the post edit records and post linking records of SO. The dataset
will be used to train the BERT-based sentence embedding model
and the question relevance prediction model. The knowledge
graph includes software development related concepts and
their relations extracted from SO posts and comments and
general knowledge graphs (e.g., Wikidata [16]). It also includes
conceptual-semantic and lexical relations enriched from lexical
databases (e.g., WordNet [17]) and categories of functionality
verbs (e.g., FuncVerbNet [18], [19]).

Model Training. In this phase, KGXQR trains a BERT-based
sentence embedding model, a graph-based concept embedding
model, and a question relevance prediction model. The sentence
embedding model is trained by fine-tuning the pre-trained
BERT model using contrastive learning based on the training
dataset consisting of pairs of relevant questions. The model
can map sentences into a high-dimensional dense vector space
where relevant sentences are close. The concept embedding
model is trained based on the knowledge graph. The model
can map the concepts and relations of the knowledge graph
to high-dimensional dense vectors which encode the structure
information of the knowledge graph. The question relevance
prediction model is trained to predict the relevance of two
questions based on the training dataset. The model is defined
based on a combined sentence representation of BERT-based
sentence embedding and graph-based concept embedding.

Question Retrieval. In this phase, KGXQR returns a ranked
list of Q&A pairs along with explanations for their relevance to
the user query. It first uses BERT-based sentence embeddings
to select candidate Q&A pairs based on similarity to the query.
Next, the question relevance prediction model is used to re-rank
the candidate pairs based on their predicted relevance. Finally,
an explanation is generated for each returned Q&A pair based
on the association paths between the concepts in the query and
the SO question.

A. Data Construction

This phase includes three steps that construct the Q&A
corpus, the training dataset, and the concept KG, respectively.

1) Q&A Corpus Construction: We extract high-quality Q&A
pairs from SO to create a Q&A corpus for the four most popular
programming languages: Java, Python, JavaScript, and C#. For
each programming language, we select the questions that meet
all the following three conditions: 1) the question is tagged
with the corresponding programming language (e.g., “java”);
2) the score of the question is greater than or equal to 5; 3)
the question has an accepted answer whose score is greater
than or equal to 5. For each selected question, we create a
Q&A pair consisting of the question and its accepted answers.
Using the SO data dump from September 2021 [2], we obtain



86,507, 81,064, 79,082, and 87,002 Q&A pairs for Java, Python,
JavaScript, and C#, respectively.

2) Training Dataset Construction: The training dataset
consists of pairs of relevant question titles (positive samples).
To avoid manual data annotation, we automatically construct
the dataset based on the duplicate question records and the
question title edit records of SO.

SO marks duplicate questions which can be used as a data
source of the training dataset. For example, “How is Hashtable
different to Hashmap” [20] and “What are the differences be-
tween a HashMap and a Hashtable in Java?” [21] are marked
as duplicate questions and we can treat their titles as a pair of
relevant question titles. However, some duplicate questions may
have low-quality titles that express irrelevant intentions. For
example, “ArrayList <? super Number> and Double” [22] and

“What is PECS (Producer Extends Consumer Super)?” [23] are
duplicate questions, but we cannot learn relevant intentions
from the two titles. To ensure the quality of the dataset, we
only select duplicate question pairs that meet the following
two conditions as the positive samples: 1) the two questions
both have a positive score; 2) the Jaccard similarity [24] (a
token-based lexical similarity) of their titles is greater than
0.1. We use a Python library TextDistance [25] to calculate
the Jaccard similarity.

SO records the edit history of question titles. For example,
the title of the SO question 345194 [26] was changed from
“Regular expression matching in jQuery” to “Regular expression
field validation in jQuery”. The titles before and after the
change express similar intentions and thus can be treated as a
pair of relevant question titles. Similar to duplicate questions
the edit history of a question may include low-quality titles
that express irrelevant intentions. For example, the title “How
to access objects in EL expression language ${}” [27] was
changed from “Help JSTL foreach”, but we cannot learn
relevant intentions from the two titles. To ensure the quality of
the dataset, we only select at most one pair of titles that meet the
following three conditions from the edit history of a question
as a positive sample: 1) the question has a positive score; 2)
the two titles are not the same after removing punctuations and
spaces and converting to lowercase; 3) the Jaccard similarity
of the two titles is greater than 0.1.

The SO dump used in our implementation includes 1,096,708
duplicate question records and 2,554,062 edit records for
16,663,358 questions. As a result, we sample 21,172 and 80,000
positive samples from the duplicate question records and the
question edit records respectively.

3) Concept KG Construction: The software development
related concept knowledge graph is constructed by extracting
and combining concepts and relations extracted from different
sources, including SO discussions and tags, general knowledge
graphs, and lexical databases.

1. Knowledge Extraction from SO Tags and Discussions
SO tags are usually software development related concepts

such as programming languages (e.g., “java”) and software
techniques (e.g., “md5”). For each tag SO collects a set of
synonyms of it, for example “c sharp” is a synonym of “c#”.

We add all the SO tags and their synonyms into the knowledge
graph and create synonymy relations between them. Besides
tags, there are also many software development related concepts
mentioned in SO posts (including questions and answers) and
comments and most of them are domain-specific ones that
are rarely found elsewhere, e.g., “StringBuffer”. We use an
existing tool AutoPhrase [28] to extract such concepts from the
text corpus of SO. AutoPhrase is an automated tool that can
mine high-quality phrases from massive text corpus through a
learning-based method. It does not rely on manual annotations,
but uses the titles of Wikipedia pages as positive samples.
Moreover, it does not require us to provide negative samples.
To better reflect the characteristics of software development
related concepts, we add all the SO tags and their synonyms
into the set of positive samples. To prepare the text corpus to
be mined, we collect all the SO posts and comments from the
data dump. In addition, we implement a Scrapy [29] based
crawler to obtain the description pages of all the SO tags (e.g.,
“java” [30]) and add them into the text corpus. We then clean
the text corpus by removing HTML tags and code snippets
using BeautifulSoup [31]. Based on the text corpus and positive
samples, AutoPhrase learns a set of models that can be used to
identify high-quality phrases from the text corpus. We collect all
the identified phrases with a confidence score higher than 0.75
and add them into the knowledge graph after lemmatization.
Finally, we add the following two kinds of categorization
relations between two concepts C1 and C2: 1) add a relation
<C2, facet of, C1> if C1’s name is the prefix of C2’s
name , e.g., <email system, facet of, email>; 2) add
a relation <C2, is, C1> if C1’s name is the suffix of C2’s
name , e.g., <email system, is, system>.

2. Knowledge Extraction from General Knowledge Graph
Wikidata [16] is a general knowledge graph with more

than 97 million concepts. It includes concepts and relations
that describe software development knowledge or related
background knowledge, such as the concepts “Simple Mail
Transfer Protocol” and “email system” and the relation
<Simple Mail Transfer Protocol, alias, SMTP>. A
challenge here is how to identify software development related
concepts from the huge number of concepts of Wikidata.
Therefore, we train a BERT-based binary text classifier to
select software development-related concepts from Wikidata.
The classifier takes the description of a Wikidata concept (i.e.,
the corresponding Wikipedia article) as input and predicts
whether the concept is related to software development or not.
Some Wikidata concepts have corresponding SO tags (indicated
by their “Stack Exchange tag” attributes) and these concepts can
be regarded as software development related. We take all these
Wikidata concepts as positive samples and randomly select
twice the number of Wikidata concepts as negative samples
considering that most Wikidata concepts are not related to
software development. We obtain Wikidata concepts from the
dump of Wikidata [32] and the corresponding Wikipedia articles
from the dump of Wikipedia [33]. We divide the dataset into
a training set and a validation set by 9:1 and the accuracy of
the classifier is 87% in the validation set, indicating a high



accuracy. We use the trained classifier to identify software
development-related concepts from Wikidata and add all the
identified concepts together with their one-hop neighbors and
relations into the knowledge graph. When adding the concepts
to the knowledge graph, we merge them with the concepts
from SO that have the same names.

3. Knowledge Extraction from Lexical Database
WordNet [17] is a large lexical database of English, which

provides rich conceptual-semantic and lexical relations (e.g.,
hyponymy, meronymy, entailment, synonym, antonym) for
words (i.e., nouns, verbs, adjectives, and adverbs). As some
words in WordNet have the corresponding concepts in the
concept knowledge graph, the relations in WordNet can be
added to enrich the software development related knowledge,
for example <tag, hyponymy, label>, <chip, meronym,

computer>, <authenticate, entailment, verify>,
and <software, antonym, hardware>. Therefore, we
check each relation in WordNet and add it to the concept
knowledge graph if the two words involved in the relation are
both concepts in the knowledge graph. Verbs play an important
role in the descriptions of software functionalities [18]. As
a functionality often can be described using different verbs,
the functionality categories and the corresponding common
verbs are also important software development knowledge.
For example, “convert” and “transform” belong to the same
functionality category that converts something from a source
to a target. Xie et al. [18] summarize 87 software functionality
categories and the corresponding verbs, which are shared in
an open-source project FuncVerbNet [19]. We add all the
functionality categories and the verbs into the knowledge
graph and create two kinds of relations between them: a

“belong to” relation between a verb and the functionality
category that the verb belong to; a “same functionality
category” relation between two verbs that belong to the
same functionality category. Note that a verb may belong to
multiple functionality categories, as it may express different
functionalities in different contexts.

Resulting Concept KG. The constructed background knowl-
edge graph contains 2,291,354 software development-related
concepts and 4,220,946 relations. Among them, 1,591,093
concepts and 1,883,557 relations are from Wikidata.

B. Model Training

In this phase, KGXQR trains a BERT-based sentence
embedding model, a graph-based concept embedding model,
and a question relevance prediction model.

1) BERT-based Sentence Embedding Model Training: A
pre-trained BERT model can be directly used for sentence
embedding. However, it may fail to capture domain-specific
semantics without fine-tuning for specific tasks [34]. Therefore,
we train a BERT-based sentence embedding model by fine-
tuning the pre-trained BERT model using contrastive learning.
The objective is to make the sentence vectors of relevant
questions as close as possible and the those of irrelevant
questions as far as possible.

Fig. 3. Contrastive Learning for Fine-Tuning BERT Model

The architecture of the contrastive learning model is a triplet
network [35] with two layers as shown in Figure 3. It takes
three sentences s, p, and n as input. Among them, s is a base
sentence, p is a positive sentence (i.e., relevant sentence) for
s and n is a negative sentence (i.e., irrelevant sentence) for
s. The first layer includes three identical deep neural network
models (i.e., BERT model) which respectively generate three
sentence vectors Es, Ep , and En for the input sentence s,
p, and n by: 1) obtaining a contextual word vector of each
word in the sentence using the BERT model; 2) calculating the
sentence vector by averaging the word vectors of the sentence
through an additional mean pooling layer. The BERT model
will add a special token [CLS] at the beginning of the input
sentence. The three BERT models share the same weights:
they initialize the weights based on the same pre-trained BERT
model and update the weights simultaneously while training.
The second layer is a loss function calculated based on the
distance between Es, Ep, and En (see Equation 1), where
d(E1, E2) means the Euclidean distance between two vectors
E1 and E2, σ is the margin of the two distances.

Loss(Es, Ep, En) = max(d(Es, Ep)−d(Es, En)+σ, 0) (1)
In the training process, the weights of the BERT models are

simultaneously updated with the objective of minimizing the
loss function. The objective implies to minimize the distance
between the sentence vectors of s and p and maximize the
distance between the sentence vectors of s and n.

The training dataset consists of pairs of relevant question
titles and pairs of irrelevant question titles. The pairs of relevant
question titles are from the training dataset introduced in
Section II-A2. For each relevant pair <q1, q2> we identify
an irrelevant pair <q1, q3> that shares a question title with
it (i.e., q1) by randomly sampling q3 from all questions in
the corpus, and then use q1, q2, and q3 as the base sentence,
positive sentence, and negative sentence, respectively.

As for the pre-trained BERT model, we use the seBERT [36]
model [37] instead of the official pre-trained BERT model [38].
seBERT is trained on a large software engineering corpus
consisting of SO posts and GitHub commit messages, thus is
more suitable for the tasks in the software engineering domain
(e.g., issue type classification) [36]. We fine-tune the seBERT
model with sentence-transformers [39], a Python library for
training sentence embedding model.

2) Concept Embedding Model Training: The knowledge (i.e.,
concepts and relations) contained in the concept knowledge



Fig. 4. Vector Translation in TransE

Fig. 5. Examples of Concept Embeddings using TransE

graph can help enhance the performance of question retrieval.
To incorporate the knowledge into the question relevance
prediction model we need to train a concept embedding
model to map the concepts and relations in the knowledge
graph to high-dimensional dense vectors encoding the structure
information of the knowledge graph.

We use the TransE model [40], an energy-based graph
embedding model, to train the concept embedding model. It
takes all the relation triples in the knowledge graph as input
and outputs the embeddings of all the concepts and relations.
As shown in Figure 4 TransE models relations as translations
operating on the low-dimensional embeddings of the entities
(i.e., concepts in KGXQR) [40]. For a relation triple <h, r,

t>, where h, r, and t respectively are the head entity, relation
type, and tail entity, TransE produces the corresponding vector
representations Eh, Er, Et that satisfy Eh + Er ≈ Et. In the
training process, TransE optimizes the embeddings for each
relation triple <h, r, t> with the objective of minimizing
d(Eh + Er, Et) − d(E′h + Er, E

′
t), where d(E1, E2) is the

distance between two vectors E1 and E2 and h′ and t′ are
randomly selected negative sample pairs for the relation r.

Figure 5 shows some examples of concept embeddings using
TransE. It can be seen that the vector representations of the
concepts that are close in the knowledge graph (i.e., concepts
in the same color) are relatively close in the embedding space
(e.g., “Gmail” and “mail”, “file” and “io”). Moreover, the
pairs of concepts having the same relation type (e.g., <SMTP,
is, protocol> and <json, is, file format>) share a
similar pattern in the relative relationships of their vector
representations in the space.

Considering that our knowledge graph is large (including
more than 2 million concepts and more than 4 million relations),
we use PyTorch-BigGraph (PBG) [41] and its implementation
shared on GitHub [42] to train the TransE model. PyTorch-
BigGraph is a distributed system implemented by Facebook
with the purpose of supporting the training of graph embedding
models on large graphs.

3) Question Relevance Prediction Model Training: Figure 6
shows the architecture of the question relevance prediction
model, which takes two questions (i.e., p and q) as input and

outputs a prediction of their relevance between 0 and 1. The
model first produces a joint vector representation for the two
questions and then classifies the two questions into relevant
or not using a Softmax classifier. To obtain the joint vector
representation, the model first generates vector representations
for the two questions using BERT-based sentence embedding
and concept-based sentence embedding respectively, and then
concatenate their vector representations.

BERT-based Sentence Embedding. The BERT-based sen-
tence embeddings of p and q (i.e., VBERT,p and VBERT,q) are
generated using the BERT-based sentence embedding model,
as shown on the left side of Figure 6.

Concept-based Sentence Embedding. To generate the
concept-based embedding (i.e., VKG) for a question (i.e., p or
q), we identify the concepts mentioned in the question and
then generate a vector representation for the question based
on the concept embeddings of its concepts. The two steps are
detailed below.

1) Concept Identification. This step identifies the concepts
mentioned in a question (i.e., p or q). We first extract
all the n-gram phrases from the questions and treat them
as possible concepts mentions after lemmatization. In our
implementation we set n to 4 following existing practice in
phrase identification [43]. Then we try to link each candidate
concept mention to a concept in the knowledge graph based
name matching. If a linked concept mention is a part of another
one, we only keep the longer one.

2) IDF Weighted Pooling. This step performs IDF weighted
pooling based on the embeddings of the concepts identified
from the question (i.e., p or q). In particular, we calculate a
weighted average of the concept embeddings and use it as the
concept-based embedding of the question. The weight of a
concept measures the importance of the concept and is defined
as the sum of the IDFs (Inverse Document Frequencies) [9]
of all the words contained in the concept. The IDF model
used in our implementation is trained on the Q&A corpus (see
Section II-A1) using Gensim [44].

Feature Concatenation. We concatenate the BERT-based
embeddings (i.e., VBERT,p, VBERT,q) of the two questions
and the concept-based embeddings (i.e., VKG,p, VKG,q) of
the two questions in the same way as in [45], [46]. First,
we concatenate the BERT-based and concept-based sentence
embeddings (i.e., VBERT , VKG) of a question (i.e., p or q)
to obtain the combined sentence embedding of the question
(i.e., Ep, Eq). Then, we further concatenate Ep and Eq in the
following three ways:

• (Ep, Eq), i.e., the concatenation of Ep and Eq;
• |Ep − Eq|, i.e., the absolute value of element-wise

difference between Ep and Eq;
• |Ep ∗Eq|, i.e., the element-wise product between Ep and
Eq .

We try all these different ways of concatenation and find
that combining all of them achieves the best performance on
the test set. Therefore, we concatenate (Ep, Eq), |Ep − Eq|,
|Ep ∗ Eq| together to form the input of the Softmax classifier.



Fig. 6. Architecture of Question Relevance Prediction Model

We implement the question relevance prediction model with
PyTorch 1.10.1. We train the model using a training set with
a 1:8 ratio of positive and negative samples. This distribution
reflects the nature of the Q&A corpus where relevant questions
are much less than irrelevant questions. The positive samples
are all from the dataset introduced in Section II-A2. We create
eight negative samples for each positive sample by finding
irrelevant questions for a question q in the positive sample
using the following two strategies:

1) randomly sample four questions whose ranks range from
100 to 150 in the relevant questions of q based on the BERT-
based sentence embedding model (see Section II-C1);

2) randomly sample four questions from the top-50 relevant
questions of q produced by the retrieval module of Answer-
Bot [47], which are not included in the top-50 relevant questions
produced by the BERT-based sentence embedding model at
the same time.

We avoid selecting questions that are included in the positive
samples involving q to create high-quality negative samples.
These negative samples are considered hard negatives, and
their distance in the embedding space is not significantly far
from the positive samples. This sampling strategy is superior
to random sampling and helps improve the quality of the
generated negative samples [48].

C. Question Retrieval

Given a user query, KGXQR returns a list of ranked Q&A
pair from the Q&A corpus, together with explanations for
their relevance to the query. This phase includes three steps,
i.e., candidate retrieval, candidate re-ranking, and explanation
generation.

1) Candidate Retrieval: The question relevance prediction
model combines BERT-based sentence embedding and concept-
based sentence embedding, thus can better estimate the
relevance between the query and the questions. However, it
requires an independent prediction for each pair of query and
question and is time consuming. Therefore, before using the
question relevance prediction model we first use a sentence

embedding based method, which is much more efficient, to
identify a set of candidate Q&A pairs.

We retrieve candidate Q&A pairs from the Q&A corpus (see
Section II-A1) based on the BERT-based sentence embedding
model (see Section II-B1). First, we use the BERT-based
sentence embedding model to generate vector representations
for both the query and the titles of the questions in the Q&A
corpus. Second, we calculate the cosine similarities between
the vector representations of the query and the question titles.
Third, we rank all the questions by the similarity and take the
top-k (e.g., top-20) questions as candidates.

To improve the efficiency of candidate retrieval, we calculate
the vector representations of all the questions in the Q&A
corpus in advance and store them in Milvus [49]. Milvus is an
open-source vector database [50] which supports high-efficient
vector similarity search. In this way, we only need to calculate
the query vector and retrieve the top-k similar question vectors
using Milvus when retrieving candidate questions online. When
the Q&A corpus grows, we can incrementally calculate vector
representations for new questions and add them to Milvus.

2) Candidate Re-ranking: We use the question relevance
prediction model (see Section II-B3) to re-rank all the candidate
questions. For each candidate question, we treat the query and
question title as the sentence p and q respectively and combine
them as the input to the model. The model outputs a prediction
ranging from 0 to 1 indicating the relevance between the query
and the question. Then we re-rank all candidate questions based
on the relevance prediction and return the results to the user.

3) Explanation Generation: For each returned question, we
generate explanations for its relevance to the query as shown in
Table I. The explanations are generated based on the concept
knowledge graph (see Section II-A3) and describe how the
query and question are relevant conceptually. The explanations
include the following four parts.
• Common Concepts: the concepts that are directly men-

tioned in both the query and the question.
• Association Paths: the conceptual association paths

between the concepts mentioned in the query and the
question.



TABLE I
AN EXAMPLE OF GENERATED EXPLANATIONS

Query How do I send an SMTP Message from Java?

Question How can I send an email by Java application
using GMail, Yahoo, or Hotmail?

Explanation

Common Concepts: send, Java
Association Paths:
1. Java<-programming language<-Gmail;
2. SMTP->alias->Simple Mail Transfer Protocol->part of
->email<-use<-email system<-instance of<-Hotmail;
3. SMTP->alias->Simple Mail Transfer Protocol->part of
->email<-use<-email system<-instance of<-Gmail.
Question Summary: Is it possible to send an email from
my Java application using a GMail account? ... Answers
with any of using Hotmail, Yahoo or GMail are acceptable
Answer Summary: ...Here’s a full working example using
GMail

• Question Summary: the sentences excerpted from the
question body that mention related concepts.

• Answer Summary: the sentences excerpted from the
accepted answer that mention related concepts.

Related concepts refer to the concepts in the query, question,
and association paths.

For a given query q and a returned question q′, we first
identify the set of concepts C(q) and C(q′) mentioned in
q and q′ respectively following the same way in question
relevance prediction model training (see Section II-B3). The
common concepts thus can be identified as the intersection
of C(q) and C(q′). Then for each concept c in C(q), we
identify candidate paths from c to any concept in C(q′) in
the concept knowledge graph. For efficiency, we limit the
maximum length of the path to 4. For each candidate path p,
we further estimate its quality considering its length and the
relevance to the query q and the question q′ using Equation 2,
where len(p) is the length of p, Vp is the vector representation
of p, and cos(V1, V2) is the cosine similarity of two vectors.
The vector representations of p (i.e., Vp) and q/q′ (i.e., Vq,q′)
are generated by averaging the vector representations of all
the words in their descriptions using a pre-trained Word2Vec
model. The description of the path p consists of the names
of all the concepts and relations involved in the path. The
description of q and q′ consists of the query (i.e., q) and the
question (i.e., q′) themselves. The Word2Vec model is trained
on the Q&A corpus (see Section II-A1) with Gensim [44]. We
rank all the candidate paths by the quality estimation and select
the top-5 paths as the association paths.

Quality(p) = 1/len(p) ∗ (cos(Vp, Vq,q′) + 1)/2 (2)

To generate the question summary, we split the question body
into sentences, rank the sentences by the number of related
concepts, and select the top-2 sentences as the summary. Note
that sentences without any related concepts are filtered out. If
two sentences have the same number of related concepts, we
prefer the sentence that contains more related concepts that
are not covered by other selected sentences to ensure diversity.
The answer summary is generated in the same way.

TABLE II
ACCURACY OF CONCEPTS AND RELATIONS

Type Concepts/SO Relations/SO Concepts/Wikidata
Accuracy 89.5% 78.1% 93.2%

Agreement 0.87 0.80 0.72

III. EVALUATION

We conduct a series of experiments to evaluate the intrinsic
quality of the concept knowledge graph and the effectiveness
and usefulness of KGXQR by answering the following research
questions. All the data and results can be found in our
replication package [51].

RQ1 (KG Intrinsic Quality): What is the intrinsic quality
of the concept knowledge graph constructed for KGXQR?

RQ2 (Effectiveness): How well does KGXQR perform in
relevant question retrieval compared with the baselines?

RQ3 (Explainability): Are the explanations provided by
KGXQR helpful for the user in relevant question retrieval?

A. RQ1: KG Intrinsic Quality

We evaluate the intrinsic quality of the concept knowledge
graph by assessing the correctness of the concepts and relations
in the knowledge graph.

1) Protocol: To ensure that our observations generalize to
the population within a certain confidence interval at a certain
confidence level, we use a sampling method, as done in previous
studies [52], [53], [54]. A sample size of 384 is required
for a confidence interval of 5 at a 95% confidence level. As
described in Section II-A3, we construct the knowledge graph
by extracting knowledge from SO tags and discussions, the
general knowledge graph (i.e., Wikidata), and lexical databases.
We randomly sample 384 concepts and 384 relations extracted
from SO tags and discussions, and 384 concepts extracted
from Wikidata. Relations extracted from Wikidata and lexical
databases are not evaluated since they are already manually
verified in their sources. We invite four MS students majored
in software engineering to independently annotate the sampled
concepts and relations. For each concept, two students decide
whether it is related to software development or not. For
each relation, two students annotate it to be correct or not.
If their annotations differ, a third student is assigned to give an
additional annotation to resolve the conflict by a majority-win
strategy.

2) Results: Table II shows the accuracy of sampled concepts
and relations with their Cohen’s Kappa agreements [55]. The
Kappa agreements are all above 0.7, indicating substantial or
almost perfect agreement. The concepts extracted from SO
(i.e., tags and discussions) and Wikidata have generally higher
accuracy, 89.5% and 93.2%, respectively. The accuracy of the
relations extracted from SO is slightly lower (78.1%), but still
acceptable. The reason for the low accuracy of relations is that
they are extracted using simple heuristic rules based on names.
In future work, more advanced techniques (e.g., deep learning-
based relation extraction techniques [56]) will be applied to
extract more accurate relations from SO. Moreover, we can
identify low-quality concepts and relations in the knowledge



graph through crowdsourcing or using deep learning techniques.
We will make our concept knowledge graph open for the
research community and keep it updated and maintained.

3) Summary: The concept knowledge graph is of high
quality, which is indicated by the accuracy of 91.4% for the
sampled concepts and 78.1% for the sampled relations.

B. RQ2: Effectiveness

We evaluate the effectiveness of KGXQR for relevant
question retrieval by comparing it with baselines on different
test datasets.

1) Baselines: We compare KGXQR with baselines from
previous work, i.e., AnswerBot-Ret [6] and CLEAR-Ret [57].

AnswerBot-Ret. AnswerBot [6] includes a module for
relevant question retrieval, which combines the Word2Vec
model and IDF metric to measure the relevance between the
input query and the questions in the corpus. We call this
module Answerbot-Ret and obtain its implementation from
the replication package of AnswerBot [58]. This baseline is a
representation of Word2Vec-based methods.

CLEAR-Ret. CLEAR is an API recommendation method
based on crowd-sourced knowledge from Stack Overflow. It
relies on a BERT-based question retrieval module to retrieve
relevant SO questions for a given query, and then extracts
candidate APIs from these related SO questions. We refer
to their method as CLEAR-Ret. Similar to our approach for
question retrieval (Section II-C1), CLEAR-Ret also trains a
BERT-based sentence embedding model on a dataset composed
of titles of relevant and irrelevant SO questions. Their dataset
construction criterion is whether two SO questions’ answers
involve the same API. We adapt CLEAR-Ret as a baseline
by training the BERT-based sentence embedding model on
the same dataset of our approach, using the pre-trained BERT
model [38].

We do not compare with traditional IR methods such as
TF-IDF, as AnswerBot has shown its advantage over them [6].

2) Test Datasets: We create a benchmark consisting of
three test datasets as shown in Table III. The three datasets
have different characteristics. The AnswerBot dataset is human
annotated small datasets and contain only Java-related queries,
while duplicate question dataset and title edit dataset are
automatically created large datasets and cover the four most
popular programming languages. The details of these datasets
are as follows:

AnswerBot Dataset. We used the AnswerBot replication
package [58] which provides a dataset of 100 Java-related
queries and their relevant SO questions as ground truth. The
queries are randomly selected SO question titles and the ground
truth includes manually annotated relevant SO questions from
the top-10 retrieval results produced by AnswerBot-Ret and
other baselines. However, as our Q&A corpus is different
from theirs, some relevant questions for a query might not be
included in their dataset. Therefore, we invite two MS students
to identify more relevant questions for the quires following
the same way in [58]. For each query we combine the top-
10 questions returned by KGXQR and all the baselines as

TABLE III
OVERVIEW OF ALL TEST DATASETS

Test Dataset Query Number Ground Truth Number
AnswerBot Dataset 100 626

Duplicate Question Dataset 4,000 12,687
Title Edit Dataset 8,000 8,000

the candidates. Then the two students annotate each candidate
questions to determine whether it is relevant to the query or not.
If their annotations are different, a third student is assigned
to give an additional annotation to resolve the conflict by
a majority-win strategy. The Kappa agreement [55] for the
annotation is 0.662, i.e., substantial agreement. In the resulting
dataset the set of relevant questions of each query consists of
the questions identified by the annotators and the questions in
the original dataset.

Duplicate Question Dataset. We randomly select 1,000
questions that have duplicates for four programming languages
(i.e., Java, Python, JavaScript, and C#) respectively from the SO
data dump [2] as queries and all their corresponding duplicate
questions as the ground truth. Note that a question may have
multiple duplicate questions.

Title Edit Dataset. We randomly select 2,000 questions
with title edit records for four programming languages (i.e.,
Java, Python, JavaScript, and C#) respectively from the SO
data dump [2]. For each question we use one of its historical
titles as the query and its current title as the relevant question.

We ensure that all the datasets have no overlaps with our
training dataset. Further, we add the ground truth (i.e., relevant
questions) of all the queries in these datasets into the Q&A
corpus we constructed in Section II-A1.

3) Protocol: We evaluate KGXQR and the two baselines
on the three test datasets based on the same Q&A corpus.
KGXQR and CLEAR-Ret use the same training data and
hyperparameters. In candidate retrieval KGXQR selects top-10
Q&A pairs as candidates for re-ranking. For AnswerBot we
train a Word2Vec model for each of the four programming
languages. As the queries are language specific, we retrieve
relevant questions in the same language question for each
query.

We use widely used IR metrics [59], i.e., A@k, R@k, MRR
(Mean Reciprocal Rank), and MAP (Mean Average Precision),
for the evaluation. A@k indicates whether the top-k results
contain at least one relevant question. R@k is the recall in the
top-k results. MRR reflects the ranking of the first relevant
question in the returned results. MAP reflects the rankings of
all the relevant questions. All metrics we use are the higher
the better.

4) Results: The evaluation results are shown in Table IV,
where the best value of each metric is in boldface. Overall,
KGXQR outperforms all the baselines on all the three datasets.

Both KGXQR and CLEAR-Ret outperform AnswerBot-Ret
across all three datasets, indicating the advantage of BERT-
based sentence embedding. However, KGXQR and CLEAR-Ret
have lower A@1 and R@1 performance than AnswerBot-Ret on



TABLE IV
PERFORMANCE COMPARISON BETWEEN KGXQR AND BASELINES ON

DIFFERENT TEST DATASETS

Dataset Metric AnswerBot-Ret CLEAR-Ret KGXQR

AnswerBot
Dataset

A@1 0.290 0.590 0.810
A@3 0.560 0.750 0.910
A@5 0.620 0.800 0.930

A@10 0.710 0.870 0.950
R@1 0.052 0.120 0.167
R@3 0.147 0.257 0.361
R@5 0.177 0.318 0.497
R@10 0.251 0.435 0.678
MRR 0.435 0.683 0.863
MAP 0.150 0.326 0.546

Duplicate
Question
Dataset

A@1 0.092 0.001 0.001
A@3 0.166 0.238 0.278
A@5 0.207 0.333 0.393

A@10 0.271 0.453 0.525
R@1 0.069 0.000 0.000
R@3 0.122 0.174 0.204
R@5 0.152 0.243 0.292
R@10 0.199 0.333 0.393
MRR 0.142 0.144 0.167
MAP 0.106 0.107 0.126

Title
Edit

Dataset

A@1 0.663 0.739 0.814
A@3 0.738 0.814 0.863
A@5 0.153 0.762 0.871

A@10 0.790 0.862 0.875
R@1 0.663 0.739 0.814
R@3 0.738 0.814 0.863
R@5 0.762 0.835 0.871
R@10 0.790 0.862 0.875
MRR 0.706 0.781 0.839
MAP 0.706 0.781 0.839

the duplicate question dataset. We attribute this to two reasons.
Firstly, the ground truth in the duplicate question dataset is
incomplete, and the annotated ground truth tends to come
from questions with significant semantic differences in their
titles. As a result, KGXQR and CLEAR-Ret may rank other
questions that are semantically closer but not in the ground
truth higher, which are also correct. Secondly, the BERT-based
sentence embedding model primarily considers semantic-level
similarity including the sentence pattern, which may result in
slightly lower performance for correct answers that are more
lexically similar to the query but share fewer keywords. This
is where the Word2Vec-based method AnswerBot performs
better. However, in the duplicate question dataset, KGXQR
and CLEAR-Ret significantly outperform AnswerBot-Ret in
A@3, A@5, R@3, and R@5 performance. One possible way to
further improve the effectiveness of our approach is to combine
it with a lexical similarity-based retrieval approach.

It is important to note that AnswerBot’s outcomes differ
from the results reported in the original paper, primarily due
to the utilization of a distinct Q&A corpus for retrieval, with
the former employing a more comprehensive and up-to-date
one.

We analyze some of the testing data where our method does
not perform well and identify typical reasons for errors. These
include insufficient coverage or quality issues in the concept
knowledge graph, as well as irrelevant concepts identified from
the question title that lead to confusion, or a lack of useful
concept mentions in the question title (with some mentioned
only in the question body).

Our analysis suggests some possible ways to improve
KGXQR. First, to better capture the conceptual associations
between queries and questions, the concept knowledge graph
could be expanded to include more high-quality concepts
and relations, and noise reduction methods could be em-
ployed to remove low-quality or irrelevant concepts. Second,
incorporating an attention layer [60] into the concept-based
sentence embedding could reduce the impact of irrelevant
concepts. Third, including the question body could provide
more information for question retrieval, but noise reduction
methods [3] should be employed to mitigate its effects.

5) Summary: The evaluation results demonstrate that
KGXQR is effective in related question retrieval, as it out-
performs the baselines on various evaluation metrics across all
three datasets.

C. RQ3: Explainability

To evaluate the usefulness of the explanations provided by
KGXQR, we compare the performance of users in selecting
relevant questions for specific programming tasks with the
explanations generated by KGXQR and a baseline method
respectively.

1) Baseline: We use TextRank [61], a general-purpose
method for automatic text summarization as the baseline. It
uses a graph-based ranking model to generate a summary for
a given document. For a returned question, we use TextRank
to extract up to three sentences from the question body and
the answer respectively and combine them together as the
explanation. We use the implementation of TextRank provided
by Gensim [44].

2) Tasks and Participants: We select 16 Java-related pro-
gramming tasks from the AnswerBot dataset and the duplicate
question dataset randomly. We ensure that the relevant ques-
tions for each task are within the top-10 retrieval results of
AnswerBot-Ret. The 16 tasks are divided into two roughly
equal task groups (TA and TB) based on the rankings of their
relevant questions. We invite 10 MS students to participate in
the study. Before the study, we conduct a pre-study survey to
assess their Java programming experience and divide them into
two roughly equal participant groups (PA and PB) based on
the survey results.

3) Protocol: For each task, we ask the participants to
select relevant questions which could provide help for the
task from the top-10 retrieval results of AnswerBot-Ret. They
complete the tasks with the help of the explanations generated
by KGXQR or TextRank. In particular, the participants in
PA complete TA with KGXQR and TB with TextRank; the
participants in PB complete TA with TextRank and TA with
KGXQR. The tasks are interleaved for each participant. That
is, the participant completes one task with KGXQR and one
with TextRank. For each task we provide the original SO
question (including title and question body) as the context
for the participants. The participants can submit nothing or
multiple questions for the task. They have a time limit of 10
minutes for each task and are considered to submit nothing if



they cannot finish in time. We record the relevant questions
they submit and their completion time.

After they finish all the tasks we conduct an survey to collect
their feedback. They are asked to evaluate the explanations
generated by KGXQR and TextRank in terms of readability
and usefulness on a 4-points Likert scale [62] (1-disagree;
2-somewhat disagree; 3-somewhat agree; 4-agree) by the
following statements:

• Readability. The explanations generated by KGXQR
(TextRank) are well-organized and easy to understand.

• Usefulness. The explanations generated by KGXQR
(TextRank) are useful for identifying relevant questions.

4) Results: For the 16 tasks, the participants submit 157
non-empty results (3 empty results with TextRank), which
include 454 questions in total (240 with KGXQR and 214 with
TextRank) . For a task, we consider its submitted result to be
correct as long as it contains at least one relevant question from
its ground truth. As a result, 111 submitted results (59 results
with KGXQR and 52 results with TextRank) are assessed as
correct and we exclude incorrect ones when analyzing the
completion time.

Table V shows the accuracy and the completion time of
the participants with the explanations generated by KGXQR
and TextRank respectively. It can be seen that, when they
are provided with explanations generated by KGXQR, the
participants complete the tasks 13.5% more accurately and
4.5% faster. The improvement in time is not so significant.
After analysis, we believe that the reasons lie in the following
two aspects: 1) the explanations of KGXQR contain more
information (e.g., association paths), thus the participants need
to spend more time reading; 2) the explanations of KGXQR
help the participants notice some relevant questions that are
ignored when using the explanations of TextRank, thus they
spend more time confirming the results and submit more
questions (240 questions vs 214 questions). We further analyze
the average time to identify a relevant question. We find
that on average using the explanations of KGXQR helps the
participants to find a relevant question 20.7% faster than using
TextRank (23s vs 29s).

Table VI shows the results of the readability and usefulness
evaluation. Overall, the participants found the explanations
generated by KGXQR to be more readable and useful compared
to those generated by TextRank. Almost all participants
preferred KGXQR’s explanations, except for one. Participants
found that KGXQR’s explanations highlighted key concepts in
the query and the returned results, and provided informative
sentences around related concepts. This helped them better
understand the relevance between the query and the questions
and increased their confidence in the selected questions. The
one participant who gave negative feedback mentioned that
KGXQR’s association paths were sometimes redundant and
preferred simple summaries with only relevant sentences. This
suggests that future improvements could focus on generating
more accurate and relevant conceptual association paths based
on a higher-quality knowledge graph.

TABLE V
ACCURACY AND COMPLETION TIME OF TASKS WITH EXPLANATIONS

GENERATED BY KGXQR AND TEXTRANK RESPECTIVELY

Avg. Accuracy Avg. Time
TextRank 65.0% 177s
KGXQR 73.8% 169s

TABLE VI
READABILITY AND USEFULNESS OF EXPLANATIONS GENERATED BY

KGXQR AND TEXTRANK RESPECTIVELY

Aspect Readability Usefulness
1 2 3 4 1 2 3 4

TextRank 0 2 4 4 0 0 4 6
KGXQR 0 0 5 5 0 0 1 9

5) Summary: The explanations provided by KGXQR led to
a 13.5% increase in accuracy and a 20.7% reduction in time to
find relevant questions, compared to the baseline. Participants
also found the explanations to be readable and useful.

D. Threats to Validity

Our studies face two main threats to internal validity:
subjective judgment in human annotations and potential quality
issues or biases in the datasets. To address these threats, we
use commonly used data analysis principles such as assigning
multiple annotators, conflict resolution, and reporting agreement
coefficients for intrinsic quality evaluation. We also minimize
human interventions in dataset construction by constructing the
training and test datasets automatically to avoid bias caused by
manual annotation. Additionally, we ensure that the training
and test datasets have no overlaps, and share all datasets used in
our studies in our replication package [51] for further evolution,
correction (if needed), and reuse by other researchers.

A limitation to the external validity of our studies is the
limited number of subjects (e.g., programming languages, Q&A
pairs in the corpus, tasks, and participants) considered in the
evaluation. To address this limitation, we evaluate the effective-
ness of KGXQR on three datasets of different characteristics
(e.g., sizes, programming languages, construction methods) to
demonstrate its generalization. However, our findings may not
be applicable to broader software development questions in
practice.

IV. RELATED WORK

Researchers have explored several analysis tasks for SO ques-
tions, including question classification [3], duplicate question
detection [63], [64], and question quality prediction [65].

Some researchers use SO question retrieval as a critical
step for other tasks such as answer summary generation [6]
and API recommendation [8]. For example, Huang et al.
[8] retrieve questions related to a programming task and
extract candidate APIs from them. Some researchers focus
on retrieving specific types of SO questions, such as API-
related ones [3]. Traditional IR techniques like TF-IDF [9]
and BM25 [10] are commonly used for question retrieval [4].
To address the lexical gap between queries and questions,
Xu et al. [6] combine Word2Vec models and IDF metrics to
measure relevance between queries and questions in the corpus.



Some researches retrieve specific parts of SO threads such as
answers [66] and code snippets [7] using various inputs like
APIs [67] and queries in other languages [68]. In contrast to
these approaches, KGXQR leverages BERT-based sentence
embedding and knowledge graph-based concept embedding to
improve the performance of question retrieval by bridging the
knowledge gap. Additionally, KGXQR generates explanations
for relevant questions returned based on conceptual associations
between the query and questions.

To improve the performance of retrieval tasks for software en-
gineering tasks such as bug localization [69], code search [70],
[71], and question retrieval [72], [73], [4]), some researchers
propose approaches for automatically reformulating queries
by supplementing relevant terms [74], [71], [69], [70], [75],
[4], asking clarification questions [72], or incorporating query
logs [73]. These approaches often rely on external knowledge
to bridge the gap between the query and the documents.
For example, Lu et al. [70] expand queries with synonyms
based on WordNet for code search. Some other researchers
have attempted to enhance relevance calculation by leveraging
relationships between APIs [5], [76]. For instance, Lin et al.
[5] developed an API graph that incorporates structural relations
between APIs and computes relevance using weighted API
graph embedding. Different from their work KGXQR constructs
a conceptual knowledge graph and integrates concept-based
embedding into the relevance prediction instead of directly
using the graph for similarity calculation.

Researchers in software engineering have created knowledge
graphs for various purposes such as API caveats [52], domain
terminology [53], [77], [78], API concepts [76], [79], API
comparison [54], API documentation [80], [81], programming
tasks [82], ML/DL models [83], and bugs [84], [85]. However,
the KGXQR project stands apart as it aims to construct a
knowledge graph specific to software development concepts
for the purpose of retrieving relevant Stack Overflow questions.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes KGXQR, a knowledge graph-based ap-
proach for explainable question retrieval in programming tasks.
KGXQR builds a concept knowledge graph and trains a ques-
tion relevance prediction model using a combination of BERT-
based sentence embedding and graph-based concept embedding.
The model re-ranks candidate SO questions selected based on
BERT-based sentence similarity to enhance the performance
of question retrieval. Additionally, it generates explanations
based on the knowledge graph. The evaluation demonstrates
the effectiveness of KGXQR for question retrieval and the
usefulness of the generated explanations. Future endeavors will
be directed towards augmenting and broadening the existing
approach to facilitate knowledge-based comprehension and
recommendation of Stack Overflow discussions. Additionally,
investigations will be conducted to explore the integration of
more advanced concept embedding technologies for further
improvement.
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