
CodeGen4Libs: A Two-Stage Approach for
Library-Oriented Code Generation

Mingwei Liu∗, Tianyong Yang∗, Yiling Lou∗†, Xueying Du∗, Ying Wang∗, and Xin Peng∗
Fudan University, Shanghai, China

Email: liumingwei@fudan.edu.cn, 21212010044@m.fudan.edu.cn, yilinglou@fudan.edu.cn,

{21210240012, 22210240051}@m.fudan.edu.cn, pengxin@fudan.edu.cn

Abstract—Automated code generation has been extensively
studied in recent literature. In this work, we first survey 66
participants to motivate a more pragmatic code generation
scenario, i.e., library-oriented code generation, where the generated
code should implement the functionally of the natural language
query with the given library. We then revisit existing learning-
based code generation techniques and find they have limited
effectiveness in such a library-oriented code generation scenario.

To address this limitation, we propose a novel library-oriented
code generation technique, CodeGen4Libs, which incorporates
two stages: import generation and code generation. The import
generation stage generates import statements for the natural
language query with the given third-party libraries, while the
code generation stage generates concrete code based on the
generated imports and the query. To evaluate the effectiveness of
our approach, we conduct extensive experiments on a dataset of
403,780 data items. Our results demonstrate that CodeGen4Libs
outperforms baseline models in both import generation and code
generation stages, achieving improvements of up to 97.4% on
EM (Exact Match), 54.5% on BLEU, and 53.5% on Hit@All.
Overall, our proposed CodeGen4Libs approach shows promising
results in generating high-quality code with specific third-party
libraries, which can improve the efficiency and effectiveness of
software development.

Index Terms—Code Generation, Third-party Library, Language
Model

I. INTRODUCTION

In recent years, code generation has gained increasing

popularity with the advanced development of deep learning

(DL) and large language models (LLM) [1], [2]. Code gen-

eration techniques substantially reduce the manual coding

effort involved in software development by automatically

generating a code snippet (e.g., a method) that implements the

desired functionality described in the given natural language

requirement. Mainstream code generation techniques first train

DL models on a training dataset with natural language queries

as input and code as output, and then leverage the trained

model to generate code for an unseen natural language query.

Recent emerging techniques leverage LLMs (e.g., CodeT5 [3],

CodeGPT [4], and PLBART [5]) for code generation, which

has been shown to achieve even better efficacy due to the large

model scale and being pre-trained on a large code corpus.

∗ M. Liu, T. Yang, Y. Lou, X. Du, Y. Wang, and X. Peng are with the
School of Computer Science and Shanghai Key Laboratory of Data Science,
Fudan University, China.† Y. Lou is the corresponding author.

As suggested by the latest survey on the developers’ perspec-

tive for using code generation tools [6], developers often expect

that these tools could be aware of more context/knowledge

by using specific frameworks/libraries in the generated code,

especially being capable to generate code with using specific

third-party libraries (e.g., invocation of an API in a library).

However, the majority of existing code generation techniques

are designed to only generate a code snippet (e.g., a method) for

a standalone natural language description. In other words, these

techniques only take the standalone functionality requirement as

inputs without considering other context during code generation.

Therefore, it remains unclear how existing techniques perform

in such a more pragmatic code generation scenario (i.e., library-
oriented code generation), where the generated code should

not only implement the desired functionality but also use the

libraries given by the developers. This is underscored by the

numerous library-related how-to questions that are frequently

encountered on platforms like Stack Overflow [7], [8], [9],

[10], [11], [12]. For example, a typical query might be, “How

do I read JSON using Gson in Java?”1.

To fill such a knowledge gap, in this work, we perform an

empirical study to (i) first motivate the library-oriented code
generation problem via a survey from 66 participants, and

(ii) then revisit the effectiveness of existing code generation

techniques in such a library-oriented code generation task. In

particular, our survey results confirm the prevalent demand

from developers for library-oriented code generation, i.e., most

developers do have personal preference for third-party libraries

used in their code. In addition, our survey results further

demonstrate the necessity of automated library-oriented code

generation techniques, since developers often find it challenging

to use the class and methods in their preferred libraries by

themselves and often spend a moderate amount of time finding

the answers. In summary, the survey results indicate the ne-

cessity and motivation for the library-oriented code generation

problem. Based on this, we then revisit existing code generation

models (e.g., CodeT5 [3], CodeGPT [4], and PLBART [5]) in

such a library-oriented code generation scenario, and find that

existing models exhibit poor performance.

Inspired by the common practice of developers that first

1https://stackoverflow.com/questions/34532431/how-to-read-json-using-
gson-in-java

434

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00159

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

15
9

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

identify the APIs they want to use (through expert knowledge

or search engines) and then write code based on that, we further

propose a novel library-oriented code generation technique

CodeGen4Libs, which incorporates two stages (i.e., import

generation and code generation) to facilitate more powerful

library-oriented code generation. The import generation stage

first generates import statements for the natural language query

with the given library; and then the code generation stage

generates the concrete code based on the generated imports

and the natural language query. Our main intuition is that the

intermediate imports can not only bridge the gap between the

specified libraries and the code but also provide more context

about the given library during code generation.

We conduct extensive experiments to evaluate the effec-

tiveness of our proposed approach, CodeGen4Libs, on a

newly-constructed dataset of 403,780 data items. Our results

demonstrate the effectiveness of each stage in CodeGen4Libs,

including both the import generation and the code generation

stages, which outperformed baseline models. Specifically,

compared to the baselines for code generation, our approach

achieved improvements of 10.8%-97.4% on EM, 16.1%-

54.5% on BLEU, 7.9%-49.8% on CodeBLEU, 8.0%-53.5% on

Hit@All, 1.0%-11.0% on Hit@1, 2.8%-16.5% on precision,

63.0%-71.1% on recall, and 3.7%-23.0% on F1. These results

demonstrate the effectiveness of our approach in library-

oriented code generation, which can generate more accurate

and consistent code compared to other models by precisely

using APIs from third-party libraries. In addition, we further

find that generating imports of higher quality could further

improve the performance of the code generation models.

In summary, the contributions of this work are as follows:

• A survey involving 66 participants to motivate the library-

oriented code generation problem, which demonstrates the

prevalent demand of developers in using specific libraries

in their code and also the necessity of automated library-

oriented code generation techniques.

• A revisiting study which demonstrates the limited effec-

tiveness of existing code generation techniques in such a

library-oriented code generation scenario.

• A novel approach CodeGen4Libs which incorporates

two stages (i.e., import generation and code generation)

to enable more accurate library-oriented code generation.

• An extensive evaluation which demonstrates the effec-

tiveness of the proposed approach CodeGen4Libs in the

library-oriented code generation scenario.

• A new dataset which is specifically constructed for the

library-oriented code generation task. The data could be

found at [13].

II. MOTIVATIONAL STUDY

In this section, we aim to enhance our comprehension

of code generation for third-party libraries. To achieve this,

we conducted a survey to investigate developers’ familiarity

with and preferences for third-party libraries (Section II-A).

Moreover, we evaluated the performance of current code

generation models on a small-scale dataset, particularly their

ability to generate code for specific third-party libraries without

specific fine-tuning on library-related data (Section II-B).

Our study aims to answer the following research questions:

RQ1: How much do developers prefer specific third-party

libraries when coding?

RQ2: To what extent are developers familiar with the

contextual intricacies of third-party libraries when coding?

RQ3: How effective are current code generation models

at generating code for specific third-party libraries without

specific fine-tuning on library-related data?

A. Survey

To address RQ1 and RQ2, we conducted an electronic

survey targeting computer science students and developers

with industrial experience, who were asked to complete a

questionnaire. The survey gathered 66 responses from a diverse

pool of participants, ranging from undergraduate to doctoral

level students, as well as developers with varying levels of

experience in the field, ranging from one to five years.

1) Questionnaire Design: The questionnaire comprises three

questions (Q1, Q2, and Q3), as shown in Table I. Q1 is a

multiple-choice question that requires participants to select one

or more relevant options as their answer. On the other hand, Q2

and Q3 are ranking question that require respondents to rank the

options based on their frequency of occurrence. Furthermore,

the questionnaire includes questions about the respondents’

backgrounds (such as whether they are undergraduates or

graduates) and their experience in the development field (such

as their duration of experience).

2) Results: Based on the survey results of Q1, it can be

inferred that only 6 participants (9.1%) had no preference,

while the majority of the participants favored using familiar

third-party libraries. Out of the 66 respondents, 49 participants

(74.2%) expressed a preference for using familiar third-party

libraries. Among these participants, 39 (59.1%) preferred well-

known third-party libraries, and 38 (57.6%) preferred libraries

that have already been used in the project. 14 participants

(21.2%) indicated a desire for libraries that meet other non-

functional project constraints. A noteworthy finding is that

all of the participants who expressed no preference were

either undergraduate or graduate students, while all doctoral

students and working professionals expressed a preference. This

observation highlights that developers, particularly those with

professional experience, have specific demands for particular

third-party libraries while coding.

The results of the survey on Q2 suggest that developers face

the most common issue of uncertainty about which classes

and methods to use to achieve a desired functionality, with an

average ranking of 1.4. This indicates that developers may

lack the necessary knowledge or experience to efficiently

utilize third-party libraries in their coding. Additionally, the

second most common issue reported was being clear on which

classes to use but being uncertain about which methods to

use, with an average ranking of 1.6. This finding suggests

that even when developers are familiar with the third-party

library, they may still encounter difficulties in identifying the

435

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

Table I
QUESTIONNAIRE QUESTIONS AND ANSWER OPTIONS FOR THIRD-PARTY LIBRARY PREFERENCE AND FAMILIARITY

ID Question Options Type

Q1

Do you have a preferred third-party library when manually
implementing a function for a specific feature or when using
a code recommendation tool to generate a function?

A. No preference

multiple
choice

B. Prefer a familiar third-party library
C. Prefer a well-known third-party library

D. Prefer a third-party library already been used in the project
E. Prefer a third-party library that satisfies non-functional project requirements

(e.g., cross-platform support)

Q2
If you have a preferred third-party library in the given scenario,
which API classes and methods within the library are you
familiar with for accomplishing the desired task? (Sort by
frequency of occurrence).

A. I know which classes and methods to use in the library to accomplish the
desired functionality

sorting
B. I know which classes in the library to use for the desired functionality, but I

am uncertain about which specific methods within these classes to employ
C. I am uncertain about which classes and methods in the library to use for

achieving the desired functionality, but I typically find the solution by
consulting external resources such as library documentation and search engines

Q3
How much time do you usually spend searching for answers
when referring to external resources? (Sort by frequency of
occurrence)

A. Less than five minutes

sorting
B. Between five and ten minutes

C. More than ten minutes
D. Unable to find the answer

most effective methods for their purposes. Finally, developers

reported a relatively infrequent occurrence of being clear on

which libraries and methods to use, as indicated by its average

ranking of 1.8.

Furthermore, the survey results of Q3 reveal that the most

frequently reported time spent finding the answer was between

5-10 minutes, with an average ranking of 1.3. This finding

suggests that developers may have some level of knowledge

about the libraries they are working with, but still require some

additional time to find the information they need. The second

most commonly reported time spent was over 10 minutes, with

an average ranking of 1.6, indicating that some developers

may need more time to fully understand and utilize third-party

libraries. Additionally, the least commonly reported response

was being unable to find an answer, with a ranking of 2.5.

This indicates that developers are generally able to find the

information they need, even if it may take them some time.

3) Summary: In summary, the survey results suggest that

developers prefer to use familiar third-party libraries, but they

encounter difficulties in using them effectively due to uncer-

tainty about which classes and methods to use. Furthermore,

the findings indicate that developers spend a moderate amount

of time finding the answers.

B. Code Generation Model Analysis

To investigate the performance of existing model for gen-

erating code for specific thrid-party library, we conduct an

experiment on small dataset.

1) Dataset: We extracted method-level code snippets related

to third-party libraries from open-source projects on GitHub

as our code corpus for empirical study and following model

training and evaluation for our approach. To obtain the

necessary data, we used the GitHub Code dataset [14] provided

by the CodeParrot organization, which contains a vast collection

of 115 million code files written in 32 different programming

languages. In this study, we focus on Java language due to its

popularity. After filtering out 5 million Java code files from the

GitHub Code dataset, we extracted a preliminary code corpus

consisting of code snippet tuples from the code files. A code

snippet tuple is in the form of <NL,Libs,Imports,Code>. The

Code field represents a complete method-level code snippet

that includes the method declaration and implementation code.

The NL field provides a natural language description of the

programming task corresponding to the Code. The Libs field

contains one or more third-party libraries used in the Code,

while the Imports field indicates the class-level imports from

third-party libraries used in the code. For a Java code file, we

initially extracted method-level code snippets (Code) using the

javalang [15] code analysis tool. For each code snippet, we

further analyzed the code file and extracted its corresponding

method comment as the natural language description of the task

(NL). We filtered out code snippets without comments. We then

extracted the class-level import statements from the code file.

For each code snippet, we matched it with the import statements

of the file to obtain the related import statements (Imports).

A code snippet was considered related to an import statement

if it contained the imported class name in the code. Finally,

we obtained the third-party libraries used in the code snippet

(Libs) based on the mapping between import statements and

libraries. It is worth noting that for convenience, we considered

the JDK [16] and Android SDK [17] as third-party libraries.

To ensure the quality of the code corpus, we performed a

series of data cleaning steps on the NL and code snippets.

Specifically, we cleaned the comments extracted from NL by

removing annotations such as “@param” and “@return” as well

as their content, eliminating non-English content and removing

hyperlinks such as “http://” and “https://”. We also cleaned the

code snippets by removing single-line comments, unifying

method names as “function”, removing consecutive white

spaces, and replacing long string constants with a placeholder

token “STR”, following similar practices in previous works [18].

As a result, we obtained a code corpus with 2,916,582 code

snippet tuples.

To reduce the corpus’s size, we filtered the code snippet

tuples based on third-party libraries. Initially, we counted the

frequency of third-party libraries used in the code snippets and

extracted the top 500 most frequently used libraries, excluding

the JDK and Android SDK. Subsequently, we retained only the

code snippets that utilized these top 500 third-party libraries,

resulting in a corpus of 1,215,900 code snippet tuples. This

filtering approach allows us to focus on the most commonly

used third-party libraries and exclude less commonly used

436

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

libraries, reducing the corpus’s size while still ensuring it is

representative of real-world usage.

We randomly selected 100 libraries from the top 500 most

popular ones and chose 5 corresponding code tuples for each

library from the code corpus. This resulted in a small-scale

testing dataset consisting of 500 code snippet tuples.

2) Models: We primarily compared the performance of

several existing code generation models that were fine-tuned

based on pre-trained language models. The pre-trained models

we used were:

PLBART. PLBART is based on the BART [19] architecture

and is pre-trained on a corpus of natural language and

programming language using denoising objectives.

CodeGPT. CodeGPT is a GPT-2 [20]-style model that is pre-

trained on the CodeSearchNet dataset [4]. For our comparison,

we used the Java domain-adaptive model [21], which starts

with a GPT-2 model and is continuously trained on Java code

from the CodeSearchNet dataset.

CodeT5. CodeT5 is adapted from the T5 [22] model and

considers crucial token type information from identifiers. It

also allows for multi-task learning on downstream tasks.

Zeng et al. [23] evaluated the effectiveness of the three

models mentioned above for code generation tasks, but they

only provided pre-trained code generation models. To obtain

the corresponding code generation models, we applied their

associated model fine-tuning code and all hyperparameter

settings from the replication package of their work [24]. We

used the CONCODE dataset [25], which is a large dataset

with over 100,000 examples of Java class files from GitHub

repositories, for training. As a result, we obtained three code

generation models that can take NL as input and generate

corresponding code snippets.

3) Metrics: For each code snippet tuple

<NL,Libs,Imports,Code> in the test dataset, we concatenate NL
and Libs using “using the following libraries: com.google.gson”
as input to the code generation models, e.g., “read a Json
array using the following libraries: com.google.gson”. We

then compare the predicted code snippets generated by the

models to the ground truth Code and calculate the following

metrics to evaluate the performance of the three models:

• Exact Match (EM): This metric measures the percentage

of predictions that exactly match the ground truth.

• Bilingual Evaluation Understudy (BLEU): A measure

of n-gram overlap between the predicted and ground truth

sequences, commonly used in machine translation.

• CodeBLEU: A modified version of the BLEU metric

designed for code, which is a weighted average of lexical,

abstract syntax tree, and data flow match.

• Hit@All: This metric measures whether all correct classes

belonging to the specified third-party library are included

in the generated code. A class is considered correct if it

also appears in the ground truth code.

• Hit@1: This metric measures whether at least one correct

class belonging to the specified third-party library is

included in the generated code.

• Precision: This metric measures the proportion of correct

classes belonging to the specified third-party library that

are included in the generated code.

• Recall: This metric measures the proportion of correct

classes belonging to the specified third-party library that

are included in the generated code compared to all correct

classes in the ground truth.

• F1: The harmonic mean of Precision and Recall, which

measures the overall effectiveness of the model in predict-

ing the correct classes of the given libraries.

EM, BLEU, and CodeBLEU are commonly used metrics for

evaluating code generation tasks [26], [27], [3]. HIT@All,

HIT@1, Precision, Recall, and F1 are specifically designed for

the task of generating code for specific third-party libraries,

which measure the effectiveness of the generated code in

correctly using the specified third-party library API classes.
4) Results: As shown in Table II, we can see that the

three code generation models performed poorly on generating

code for specific third-party libraries. For example, the code

generated by CodeGPT only contains 7.7% of API classes from

the specified libraries. Among the three models, the CodeT5-

based model performed relatively better (9.9%), but still not

satisfactory.

There might be two possible reasons for this poor perfor-

mance. Firstly, the training data for these models did not

particularly consider the input of libraries, and the models may

not have been fine-tuned on data containing libraries as input.

Even if the Libs are included as part of the model input, the

model may still not understand them well. Secondly, the gap

between the libraries included in the input and the actual API

classes used in the code might be large. Including some import

statements related to the given third-party libraries in the input

that are also related to the given NL may be helpful for the

model (because import statements are related to both Libs and

the classes used in the code).
5) Summary: In summary, the experiment demonstrated that

existing code generation models exhibit poor performance when

generating code for specific third-party libraries, suggesting

the need for dedicated fine-tuning and design efforts.

III. APPROACH

We formulate the problem of library-oriented code generation

as generating method-level code snippets (Code) from a

natural language description (NL) and one or more specified

third-party libraries (Libs), i.e., NL+Libs->Code. However,

generating code specific to a given library is more challenging

than normal code generation due to the restricted generation

scenario. To address this task, we propose a two-stage method,

CodeGen4Libs, which splits it into import generation and code

generation subtasks. The first task generates API class-level

import statements (Imports) from NL and Libs (i.e., NL+Libs-
>Imports), while the second generates Code from NL, Libs,

and Imports (i.e., NL+Libs+Imports->Code). Figure 1 provides

an overview of CodeGen4Libs.

Splitting the task into two subtasks is inspired by the practice

of developers who, when faced with a task and a third-party

437

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

Table II
PERFORMANCE COMPARISON OF EXISTING CODE GENERATION MODELS ON THIRD-PARTY LIBRARY-ORIENTED CODE GENERATION

Model EM BLEU CodeBLEU Hit@All Hit@1 Precision Recall F1
PLBART 0 0.046 0.097 0.060 0.126 0.123 0.089 0.097

CodeGPT 0 0.009 0.054 0.058 0.104 0.099 0.077 0.083

CodeT5 0 0.051 0.093 0.056 0.152 0.144 0.099 0.109

Figure 1. Overview of CodeGen4Libs

library, often first identify the APIs they want to use (through

expert knowledge or search engines) and then write code based

on that. Separating the task into two steps allows different

models to be trained to handle import generation and code

generation. Compared to training a single end-to-end model

for code generation specific to a given library, splitting the task

into two subtasks provides more context about the given library

during code generation (provided by the API class imports

generated in the first subtask). This is important because it

helps bridge the gap between the specified libraries and the

generated code, resulting in code that is more limited to the

given library. Overall, this two-stage approach enables us to

generate code for specific third-party libraries more effectively

and efficiently.

In both import generation and code generation, we adopt a

retrieval-augmented technique [28] to enhance the performance

of our models. We elaborate on our approach in Section III-A

and Section III-B, respectively.

A. Import Generation

We formalize the import generation task as a sequence-to-

sequence generation task, similar to code generation tasks. To

achieve this, we fine-tune CodeT5, a state-of-the-art model, as

it has demonstrated outstanding performance on code-related

tasks [3]. To further enhance import generation, we incorporate

retrieval-augmented technique to retrieve import statements

Imports(Ret) related to the given NL and Libs, which are

used as input for the import generation model. Retrieval-

augmented techniques have been demonstrated to improve

the performance of sequence-to-sequence generation tasks [28],

and are widely employed in software engineering-related tasks

like code generation [29] and commit message generation [30].

As shown in Figure 1, the entire import generation process

comprises three main modules: the import retriever, import gen-

erator, and imports cleaner. The import retriever is responsible

for retrieving relevant imports Imports(Ret) from a large-scale

corpus based on the given NL and Libs. The import generator

takes the concatenated input of NL, Libs, and Imports(Ret) as

input and employs a pre-trained import generation model to

generate raw imports statements. Finally, the imports cleaner

is responsible for cleaning the generated imports to obtain

higher-quality imports statements, Imports(Gen), to serve as

input to the subsequent code generation model.

We will now delve into each module in more detail.

1) Import Retriever: To retrieve relevant imports for a given

NL and Libs, we employ the BM25 algorithm, which is widely

used in text similarity tasks [31]. BM25 is a popular bag-

of-words retrieval function that estimates the lexical-level

similarity between two sentences. The higher the BM25 score,

the more similar the sentences are.

To retrieve relevant imports, we apply BM25 to a pre-

collected code corpus (e.g., the Java code corpus we collected

in Section II-B1) that contains a series of code snippet tuples

in the form of <NL,Libs,Imports,Code>. We retrieve the top-k

(e.g., 1,000) code snippets with the most similar NL to the

given NL and then filter them in order of decreasing similarity

until we find one that uses all the given Libs. Next, we remove

any imports statements from non-specified Libs and sort the

remaining imports alphabetically to obtain the final set of

relevant imports Imports(Ret).

438

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

For instance, consider the NL Gets the detailed information
for a given agent pool” and the two libraries com.azure.core
and com.azure.resourcemanager as Libs, shown in Figure 1.

The BM25-based retriever may retrieve a code snippet tuple

with the most similar NL as Gets the detailed information
for a given run”. The tuple has four import statements as

Imports, i.e., “import com.azure.core.annotation.ReturnType;
import com.azure.core.annotation.ServiceMethod;
import com.azure.core.http.rest.Response; import
com.azure.resourcemanager.containerregistry.fluent.models.Run-
Inner;”, which covers all the two given Libs. After the

sorting and filtering steps, the final set of relevant imports

Imports(Ret) is obtained.

We applied the filtering step to avoid introducing imports

for non-specified third-party libraries, which could mislead the

code generation model. We also applied the sorting step to

normalize the imports from different sources.

Figure 2. Architecture of the Import Generator

2) Import Generator: To implement our import generator,

we employed an encoder-decoder neural network based on

CodeT5, which has shown excellent performance on code-

related tasks [3], [32]. As shown in Figure 2, the model

architecture consists of a bidirectional encoder and an au-

toregressive decoder. In our approach, we fine-tuned CodeT5

for import generation, which we modeled as a sequence-to-

sequence generation task.

First, we concatenate the input NL, Libs, and Imports(Ret)
together with a special separator token [SEP] to form a single

input sequence. Then, we tokenize the input sequence and

encode the tokenized input sequence into a vector representation

using a bidirectional transformer-based encoder, which captures

the contextual information of the input sequence. Then, we

use a transformer-based autoregressive decoder to generate

the target sequence of Imports. The decoder is autoregressive,

meaning that it generates one token at a time based on the

previous tokens generated. It takes the vector representations of

the input sequence as its initial input. At each decoding step, the

decoder generates a probability distribution over the possible

next tokens in the sequence, conditioned on the previously

generated tokens. The next token is then sampled from this

distribution and used as input to the next decoding step. This

process is repeated until the end-of-sequence token (e.g., </s>)

is generated.

During training, we use a cross-entropy loss to optimize the

model’s parameters to minimize the difference between the

generated Imports and the ground truth Imports. We fine-tune

the pre-trained CodeT5 model on our import generation task

using the training data described in Section IV-A1. The details

of our implementation are described in Section IV-A2.

3) Import Cleaner: The imports generated by the model may

suffer from noise, such as duplicates and incomplete statements,

which can have a negative impact on the effectiveness of

the code generation process. For instance, the model might

output import statements like “import com” or “import
com.google.gson.Gson; import com.google.gson.Gson;”, which

contain duplicates or are incomplete.

This issue arises from the fact that the import generator is

based on encoder-decoder architectures, and certain content

may have a higher decoding probability, leading to repeated

generation. Additionally, the generated content may exceed the

length limit, leading to incomplete or truncated statements. To

mitigate these issues, we apply several criteria to clean up the

generated import statements.

We first split the generated import statements based on

semicolons to obtain individual import statements. We then

apply several criteria to clean up each import statement:

• Remove any duplicate import statements to eliminate

redundancy in the final list of imports.

• Filter out any import statements that were incomplete,

meaning they did not end with a semicolon or did not

start with the keyword “import”.

• Split the fully qualified class names in the import state-

ments into a list of strings representing the package and

class names, and then remove any import statements

containing duplicate package or class names.

• Compare the generated imports with the given Libs and

filter out any imports that do not belong to the given Libs.

Lastly, we alphabetically sort the remaining import statements

and combine them to form a final set of clean import statements

named Imports(Gen).

B. Code Generation

We formalize the code generation task as a sequence-

to-sequence generation task as well. Similar to the import

generation, we fine-tune CodeT5 as the code generation model

and incorporate retrieval-augmented technique to retrieve code

snippets Code(Ret) related to the given NL and Libs as the

input for the code generation model. The overall process is

illustrated in Figure 1, and consists of two main modules: code

retriever and code generator. We will now delve into each

module in more detail.

1) Code Retriever: To retrieve relevant code snippets for

a given NL and Libs, we utilize the BM25 algorithm, which

is similar to the import retrieval process discussed in Sec-

tion III-A1. We begin by applying BM25 to a pre-collected code

corpus, such as the Java code corpus collected in Section II-B1,

which contains a series of code snippet tuples in the form

of <NL,Libs,Imports,Code>. We then retrieve the top-k (e.g.,

1,000) code snippets with the highest similarity score to the

given NL, and filter them in order of decreasing similarity until

we find one that uses all the given Libs.

439

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

As shown in Figure 1, the retrieved code snippet Code(Ret)
uses the two given Libs and has the highest similarity score

with the given NL, “Gets the detailed information for a given

agent pool.”

2) Code Generator: We employ the same model architecture

for our code generation module as our import generator, using

CodeT5 as the core model. The task of generating code is

modeled as a sequence-to-sequence generation task, where the

input sequence includes the natural language description NL,

required libraries Libs, generated imports Import(Gen), and

relevant code snippets Code(Ret) retrieved using the BM25

algorithm (as described in Section III-B1). The target sequence

is the generated code Code(Gen).
To prepare the input sequence for the model, we first

concatenate the input fields with the special separator token

[SEP], creating a single input sequence. This input sequence

is then tokenized and encoded into a vector representation

using the bidirectional transformer-based encoder. The decoder

generates the target sequence of Code(Gen), conditioned on

the encoded vector representation of the input sequence.

Importantly, the combination of Imports(Gen) and Code(Ret)
offers several benefits to our code generation task. Imports(Gen)
provides the model with key third-party library APIs that

may be required to generate the code, reducing the need

for extensive search through libraries. Meanwhile, Code(Ret)
provides templates, such as loop control structures, and usage

patterns for specific third-party library APIs that can be

used as references during code generation. Although neither

Imports(Gen) nor Code(Ret) can ensure correctness, their

combination enables the model to concentrate on the key APIs

that are frequently present in both Imports(Gen) and Code(Ret)
and are essential for the task. Together, these two inputs help to

reduce the noise and interference in the final code generation.

We fine-tune the pre-trained CodeT5 model on our code gen-

eration task using the training data described in Section IV-A1.

During training, we use Imports(Gen) generated by the model

for each code tuple, rather than relying on the ground truth

Imports. This approach allows us to minimize the gap between

the input at training time and the input during inference, as both

inputs use the same import generator to produce Imports(Gen).
By reducing this gap, we can better simulate the real-world

use case and improve the model’s performance on actual tasks.

More implementation details are described in Section IV-A2.

IV. EVALUATION

In this section, we evaluate the effectiveness of Code-

Gen4Libs by addressing the following research questions:

RQ1 (Effectiveness of Library-oriented Imports Gener-
ation): How effective is CodeGen4Libs in generating high-

quality library-oriented imports?

RQ2 (Effectiveness of Library-oriented Code Generation):
How effective is CodeGen4Libs in generating high-quality

library-oriented code?

RQ3 (Imports Generation Quality Impact): To what extent

does the quality of import generation affect the quality of code

generation results?

Table III
STATISTICS OF THE BENCHMARK

Dataset Size NL/token Code/token Imports Libs
Train 391,811 19.0 87.2 2.8 1.7

Validation 5,967 18.3 72.9 2.1 1.3

Test 6,002 18.4 77.3 2.4 1.5

A. Experimentation Setup

1) Benchmark: We created a benchmark for training and

evaluation using a code corpus described in Section II-B1.

Initially, we randomly sampled 600,000 code snippet tuples

<NL,Libs,Imports,Code> from the corpus. We filtered out tuple

samples whose tokenized Code length exceeded 512 tokens

and samples with inputs (NL+Libs+Imports) exceeding 512

tokens. This is because our model has a maximum input

length limitation. Additionally, we removed samples that had

the same NL and Libs but different Code, as they could

potentially interfere with the model’s learning. To standardize

the benchmark, we sorted libraries and import statements

alphabetically. To ensure the balance of the dataset, we include

a maximum of 5,000 corresponding code snippet tuples for each

library. The resulting benchmark included 403,780 code snippet

tuples for 500 libraries. We split the benchmark randomly into

training, validation, and test datasets and partitioned the tuples

to ensure balance and include at least 1.5% of relevant code

snippets for each library in the training and validation datasets.

Table III shows statistics for the datasets.

2) Implementation: To build the import retriever and code

retriever, we utilized the open-source search engine Elas-

ticsearch [33] and built an index on the NL of the code

corpus, which contains 1,215,900 code snippet tuples (See

Section II-B1). This allowed us to efficiently retrieve relevant

code snippets and imports for a given natural language query.

We trained the import generation model and code generation

models on the benchmark dataset using the training set, and

validated their performance using the validation set. The models

were implemented using the Python library transformers [34],

initialized with the CodeT5-base [35] model. For model

optimization, we used the cross-entropy loss and the Adam

optimizer, with a learning rate of 4e-5 and a batch size of

8. Early stopping based on validation loss was used during

the 30 epochs of training, which were conducted on a single

Nvidia 3090 GPU. We followed the same hyperparameters and

training procedure as in previous work [23].

B. RQ1: Effectiveness of Library-oriented Imports Generation

To evaluate the effectiveness of CodeGen4Libs in import

generation, we compared our approach with multiple baselines

on the benchmark dataset.

1) Baselines: We refer to our approach for import generation

as Import(Gen), which represents the import statements ob-

tained through our import generator and cleaner. We compared

it with the following baseline methods:

• Imports(Ret). The simplest method for the NL+Libs-
>Imports task is retrieval-based. In Section III-A1, we

used the BM25 algorithm to retrieve the most relevant

imports for a given NL and Libs. We used this BM25-based

440

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

Table IV
COMPARISON OF IMPORTS GENERATION PERFORMANCE BETWEEN DIFFERENT METHODS

Method EM BLEU Hit@All Hit@1 Precision Recall F1
Imports(Ret) 0.380 0.640 0.457 0.675 0.677 0.581 0.625

Imports(Gen)-NL+Libs 0.495 0.772 0.554 0.816 0.718 0.709 0.713

Imports(Gen)∪Imports(Ret) 0.394 0.626 0.643 0.869 0.659 0.778 0.714

Imports(Gen)∩Imports(Ret) 0.395 0.445 0.423 0.649 0.887 0.545 0.675

Imports(Gen) 0.536 0.782 0.602 0.848 0.746 0.748 0.747

Figure 3. Import Generation Test Cases

import statement retriever as a baseline and compared it

with our generation-based approach.

• Import(Gen)-NL+Libs. To investigate whether retrieval-

enhancement technology is helpful for the import gen-

eration task, we trained a new import generation model

using the same dataset and hyperparameters, but with only

NL and Libs as input, denoted as Import(Gen)-NL+Libs.

This comparison allows us to assess whether retrieving

relevant imports as input for the import generation model

truly improves the effectiveness of import generation.

• Import(Gen)∩Imports(Ret). One possible conjecture is

that combining the imports generated by the generation-

based method and the retrieval-based method can further

improve the effectiveness. Import(Gen)∩Imports(Ret) rep-

resents taking the intersection of the import statements

generated by the two methods as the final import gener-

ation results, which can reduce the noise in the import

generation result.

• Import(Gen)∪Imports(Ret). Import(Gen)∪Imports(Ret)
is another way to combine the two methods, representing

taking the union of the import statements obtained by

the two methods, which may improve the coverage of

generated imports.

2) Metrics: We evaluate our approach and the baselines on

the test dataset of import generation. The evaluation metrics

used include EM, BLEU, HIT@All, HIT@1, Precision, Recall,

and F1. These metrics have been introduced in Section II-B3.

We do not use CodeBLEU to evaluate the quality of generated

imports because imports do not contain the additional informa-

tion like data flow. To compute the metrics HIT@All, HIT@1,

Precision, Recall, and F1, we split the generated imports and

ground truth imports into individual import statements by

semicolon and compare them at the statement level.

3) Results: Table IV provides a comprehensive comparison

of various methods for import statement generation, and

the results clearly indicate that the two generation-based

methods, Imports(Gen) and Imports(Gen)-NL+Libs, outperform

the retrieval-based method, Imports(Ret), across all seven

metrics. This suggests that generating import statements directly

from natural language descriptions and relevant libraries is a

more effective approach than retrieving them solely based on

the given description and libraries. Moreover, the performance

of Imports(Gen) is significantly better than Imports(Gen)-
NL+Libs, demonstrating the benefits of incorporating relevant

libraries during the generation process.

We also evaluate the effectiveness of combining the

generation-based and retrieval-based methods. The method

of taking the union of the import statements obtained by the

two methods, Import(Gen)∪Imports(Ret), achieves a lower

EM and BLEU score compared to Import(Gen), but with

higher Hit@All, Hit@1, and recall scores, indicating a better

coverage of the import statements. The method of taking the

intersection of the import statements obtained by the two

methods, Import(Gen)∩Imports(Ret), has lower performance

in all metrics except for precision, which is higher than other

methods. This suggests that combining the two methods through

taking the intersection of their import statements may reduce

noise but with lower coverage.

Overall, the results demonstrate the effectiveness of our

proposed generation-based method for import generation and

the potential benefits of combining it with retrieval-based

methods. However, we ultimately choose Imports(Gen) as

our method for code generation because it achieves a good

balance between coverage and precision (highest F1 score) and

significantly outperforms the method of combining generation-

based and retrieval-based methods in terms of EM and BLEU

scores.

Figure 3 illustrates two test cases for import statement

generation, where the results of all methods are marked with

different colors. The term Imports(GT) refers to the ground truth

import statements. In case 1, we observe that only Imports(Gen)

441

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

Table V
COMPARISON OF CODE GENERATION PERFORMANCE BETWEEN DIFFERENT METHODS

Model Input EM BLEU CodeBLEU Hit@All Hit@1 Precision Recall F1
CodeGPT NL+Libs 0.190 0.316 0.339 0.395 0.822 0.684 0.597 0.637

PLBART NL+Libs 0.114 0.308 0.309 0.327 0.807 0.638 0.551 0.591

CodeT5 NL+Libs 0.177 0.401 0.385 0.406 0.852 0.687 0.630 0.657

CodeT5 NL+Libs+Imports(Gen) 0.191 0.388 0.396 0.447 0.887 0.723 0.676 0.699

CodeT5 NL+Libs+Code(Ret) 0.203 0.410 0.429 0.465 0.876 0.722 0.681 0.701

CodeT5 NL+Libs+Imports(Gen)+Code(Ret) 0.225 0.476 0.463 0.502 0.896 0.743 0.711 0.727

Figure 4. Code Generation Test Cases

correctly predicts all import statements in the ground truth,

while even Imports(Ret) contains an incorrect import statement

(“import org.eclipse.jdt.core.dom.DoStatement”) and misses

a correct one (“import org.eclipse.jdt.core.dom.IfStatement”).

However, the import generator is not affected by this and still

predicts the correct imports. Moreover, comparing Imports(Gen)
to Imports(Gen)-NL+Libs, we can see that incorporating

relevant libraries during generation helps the model generate

more correct import statements and improves the model’s

effectiveness. In case 2, we observe that Imports(Gen)-NL+Libs
generates one extra import statement compared to the ground

truth, but with the help of retrieval-augmented technique, this

error disappears. Overall, the retrieval-augmented technique

has greatly improved import generation by increasing both

precision and recall.
4) Summary: In summary, our method demonstrates superior

effectiveness in import generation, compared to the baselines.

C. RQ2: Effectiveness of Library-oriented Code Generation
1) Baselines: To serve as baselines for our approach, we

fine-tuned the pre-trained language models that we introduced

in Section II-B – namely CodeGPT, PLBART, and CodeT5

– using the benchmark dataset. In contrast to our approach,

these models take only the NL+Libs as input and generate the

corresponding code Code as output, without any additional

input. We fine-tuned these models by providing the input

sequence of NL+Libs to the models and training them to

generate the corresponding code c. The fine-tuning process

was carried out in accordance with previous work [23], same

as in Section II-B2.

To demonstrate the effectiveness of our approach in in-

corporating additional inputs, we trained two variants of our

code generation model using CodeT5. The first variant took

NL+Libs+Import(Gen) as input, while the second variant

took NL+Libs+Code(Ret) as input. We followed the same

hyperparameters and training procedures as those detailed

in Section IV-A2. This approach allowed us to compare the

performance of our method with and without incorporating

import statements generated through our method, as well as

with the performance of using retrieved code as input.

2) Metrics: The evaluation metrics include EM, BLEU,

CodeBLEU, Hit@All, Hit@1, Precision, Recall, and F1. They

evaluate the quality of generated code and the matching

between generated code and the ground truth.

3) Results: Table V presents the experimental results of code

generation for different models and input variations. Among

these models, our code generation model, i.e., CodeT5 with

NL+Libs+Import(Gen)+Code(Ret) input, achieved the best

performance in all evaluation metrics.

Compared to the baseline models, our proposed method

achieved significant improvements in all evaluation metrics,

with EM improvement ranging from 10.8% to 97.4%, BLEU

improvement ranging from 16.1% to 54.5%, CodeBLEU im-

provement ranging from 7.9% to 49.8%, Hit@All improvement

ranging from 8.0% to 53.5%, Hit@1 improvement ranging

from 1.0% to 11.0%, precision improvement ranging from

2.8% to 16.5%, recall improvement ranging from 63.0% to

71.1%, and F1 improvement ranging from 3.7% to 23.0%.

These results demonstrate the effectiveness of our approach

442

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

Table VI
THE IMPACT OF IMPORTS QUALITY ON CODE GENERATION RESULTS IN CODEGEN4LIBS

Imports EM BLEU CodeBLEU Hit@All Hit@1 Precision Recall F1
Imports(Ret) 0.172 0.420 0.412 0.406 0.828 0.664 0.618 0.640

Imports(Gen)∪Imports(Ret) 0.210 0.438 0.454 0.495 0.895 0.710 0.710 0.710

Imports(Gen)∩Imports(Ret) 0.179 0.433 0.407 0.406 0.830 0.715 0.615 0.662

Imports(Gen) 0.225 0.476 0.463 0.502 0.896 0.743 0.711 0.727

Imports(GT) 0.249 0.504 0.484 0.603 0.969 0.866 0.819 0.842

in library-oriented code generation, which can generate more

accurate and consistent code compared to other models by

precisely using APIs from third-party libraries.

The two variants of CodeGen4Libs, i.e., CodeT5 with

NL+Libs+Import(Gen) and NL+Libs+Code(Ret), also achieve

good results, but are outperformed by the CodeGen4Libs

(CodeT5 with NL+Libs+Import(Gen)+Code(Ret)). This sug-

gests that both incorporating generated import statements and

using retrieved code snippets can improve the code generation

performance, but combining them leads to even better results.

Figure 4 illustrates three test cases for code generation,

where the results of different methods are marked with

different colors. The term Code(GT) refers to the ground

truth code for the input. In case 1, we observe that both

the code generation models with NL+Libs+Imports(Gen) and

NL+Libs+Imports(Gen)+Code(Ret) generate the correct results,

while the models with only NL+Libs and NL+Libs+Code(Ret)
generate incorrect code. Although the retrieved code Code(Ret)
is unrelated to the given task NL and Libs, our approach

can still generate correct code based on the help of gener-

ated imports Imports(Gen), even in the presence of noise

from retrieved code. In case 2, only our approach with

NL+Libs+Imports(Gen)+Code(Ret) generates the correct code.

This is because it combines the information provided by

Imports(Gen) and Code(Ret) together, and the noise in the

Code(Ret) (using some irrelevant APIs) does not affect the

generated effect since the model uses the code structure pro-

vided by Code(Ret). Similarly, in case 3, only the information

provided by the Imports(Gen) is not enough, and combining

Imports(Gen) and Code(Ret) leads to the best result. These

results demonstrate that Imports(Gen) and Code(Ret) can

complement each other in library-oriented code generation

tasks. By combining them, our approach can leverage the

strengths of both of them and produce more accurate and

consistent code.

In this study, we fine-tuned CodeT5 to develop import

generation and code generation models due to its superior

performance on code-related tasks compared to other existing

pre-trained language models [3], [32]. However, it’s important

to note that our approach can serve as a foundational framework,

and in the future, more advanced models could replace CodeT5

for enhanced outcomes.

4) Summary: Our experiments demonstrate that our ap-

proach, which combines generated import statements and

retrieved code snippets, is effective in improving the accuracy

and consistency of library-oriented code generation.

D. RQ3: Imports Generation Quality Impact

In this section, we investigate the impact of import quality

on code generation results in CodeGen4Libs.

1) Design: Specifically, we compare the performance of

CodeGen4Libs using different imports as inputs on test dataset

of the benchmark, i.e., the different imports shown in Table IV

(see Section IV-B1). We also try to use the Imports(GT) that is

the ground truth imports from the benchmark as the input. We

evaluate the performance the same metrics as Section IV-C2.

2) Results: Table VI presents the impact of import quality on

code generation results in CodeGen4Libs. The study examined

five different import strategies. The results show that using

Imports(GT) as input achieved the best performance across all

metrics, followed by Imports(Gen). Import(GT) resulted in a

Hit@1 of 0.969 and F1 of 0.842, which is 8.15%-17.03% and

15.82%-31.56% higher than other strategies, respectively. The

study demonstrates that the quality of imports used as input

has a significant impact on the performance of CodeGen4Libs.

It is worth noting that using Imports(Gen) also performed well,

indicating that the CodeT5 model can generate high-quality

imports. However, the performance of Imports(Gen) is still

lower than that of Imports(GT), suggesting that there is still

room for improvement in the imports generation capability of

the model.

3) Summary: In conclusion, the experiment results under-

score the significance of using high-quality imports as input

for code generation models and imply that enhancing imports

generation capabilities can further improve the performance of

code generation models.

E. Threats to Validity

Our study may face three validity threats. The first pertains to

the subjectivity and lack of representativeness in our survey. To

address this, we invited participants from diverse backgrounds

to ensure the generalizability of our conclusions.

The second validity threat relates to the construction of our

dataset from scratch, as there is no existing dataset specifically

designed for code generation from third-party libraries. To

mitigate this threat, we followed similar practices as previous

works and ensured that our dataset covers a diverse range of

third-party libraries [18].

The third validity threat concerns the implementation of

our proposed model and baseline methods. To address this,

we adopted existing fine-tuning scripts and hyperparameters

from related works [23] and made our source code and dataset

publicly available for validation [13]. Moreover, our dataset

contains 6,002 code snippet pairs, significantly larger than

the widely-used CONCODE benchmark’s 2,000 test cases, to

improve the robustness of our model. Despite our focus on

443

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

Java, our method is not language-specific and can apply to

any object-oriented language involving a significant amount

of third-party library APIs. We plan to expand our dataset to

support multiple programming languages in the future.

V. RELATED WORK

Code generation aims to produce source code from given

natural language descriptions or requirements, and it has long

been a central focus of software engineering research [36],

[37], [38], [39]. Traditional approaches to code generation

include sequence-based and tree-based methods. Sequence-

based models utilize neural networks to generate source code

token by token based on the input description, whereas tree-

based models construct a parse tree of the program from the

natural language description and subsequently convert it into

corresponding code [40], [41].

In recent times, the landscape of code-related tasks has

been revolutionized by pre-trained language models, which

have outperformed conventional sequence-based and tree-based

methods. Some prominent large-scale pre-trained models in this

domain include CodeBERT [42], CodeT5 [3], InCoder [43],

CodeGPT [4], and PLBART [5]. Fine-tuning these models has

emerged as a new paradigm for code generation. In this study,

we fine-tune CodeT5 to develop import generation and code

generation models. Diverging from general code generation, our

focus lies in library-oriented code generation within a specific

scenario. In fact, there has been a surge of interest in code

generation related to libraries [44], [45], [46]. While existing

efforts on library-oriented code generation mainly support a

few specific third-party libraries (e.g., Numpy) or focus on

generating code involving one single external library, our work

proposes a novel two-stage approach which is able to generate

code for multiple arbitrary libraries.

Retrieval-augmented techniques have gained attention in

natural language text generation tasks [28] and software

engineering tasks like code generation, summarization, and

completion [29], [47], [48], [49], [50]. Parvez et al. [29]

proposed the REDCODER framework that retrieves relevant

code/summaries using dense embedding retrieval and supple-

ments them to code generation/summarization models. Our

approach also uses retrieval to obtain import statements/code

snippets for specific libraries that are similar to the given

description. To the best of our knowledge, this is the first

application of retrieval-augmented techniques to the import

generation task.

Researchers have created benchmarks for various software

engineering tasks, including code generation, code search,

and defect repair, to facilitate evaluation on the same bench-

mark [18], [27], [51], [52], [38]. CONCODE [18], created by

Iyer et al., is a widely-used benchmark for natural language to

code generation, consisting of over 100,000 examples of Java

classes from online code repositories. However, it focuses on

general code generation rather than specifically targeting the

task of library-oriented code generation. Our work is the first

to construct a large-scale dataset for the task of library-oriented

code generation.

VI. CONCLUSIONS

In this work, we proposed CodeGen4Libs, a novel approach

which incorporates two stages (i.e., import generation and

code generation) to enable more accurate library-oriented

code generation. Our experiments demonstrated its supe-

rior performance compared to existing approaches, and our

questionnaire provided insights into the demand for library-

oriented code generation. Our work highlights the importance

of considering import statements in code generation tasks,

with potential to significantly improve software development

efficiency and effectiveness. Future work includes expanding

to other programming languages and libraries and improving

import generation performance.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-

dation of China under Grant No. 61972098.

REFERENCES

[1] Z. Yang, S. Chen, C. Gao, Z. Li, G. Li, and R. Lv, “Deep learning
based code generation methods: A literature review,” arXiv preprint
arXiv:2303.01056, 2023.

[2] Z. Yuan, J. Liu, Q. Zi, M. Liu, X. Peng, and Y. Lou, “Evaluating
instruction-tuned large language models on code comprehension and
generation,” arXiv preprint arXiv:2308.01240, 2023.

[3] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, 2021, pp. 8696–8708.

[4] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” in Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.

[5] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” arXiv preprint
arXiv:2103.06333, 2021.

[6] M. Ciniselli, L. Pascarella, E. Aghajani, S. Scalabrino, R. Oliveto,
and G. Bavota, “Source code recommender systems: The practitioners’
perspective,” arXiv preprint arXiv:2302.04098, 2023.

[7] M. Liu, X. Peng, A. Marcus, S. Xing, C. Treude, and C. Zhao, “Api-
related developer information needs in stack overflow,” IEEE Trans.
Software Eng., vol. 48, no. 11, pp. 4485–4500, 2022.

[8] M. Liu, X. Peng, A. Marcus, C. Treude, J. Xie, H. Xu, and Y. Yang, “How
to formulate specific how-to questions in software development?” in 30th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2020, November 14-18, 2022, Virtual Event, Singapore. ACM,
2020, pp. 1015–1026.

[9] M. Liu, X. Peng, Q. Jiang, A. Marcus, J. Yang, and W. Zhao,
“Searching stackoverflow questions with multi-faceted categorization,”
in Proceedings of the Tenth Asia-Pacific Symposium on Internetware,
Internetware 2018, Beijing, China, September 16-16, 2018. ACM, 2018,
pp. 10:1–10:10.

[10] J. Liu, S. Baltes, C. Treude, D. Lo, Y. Zhang, and X. Xia, “Characterizing
search activities on stack overflow,” in ESEC/FSE ’21: 29th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, August 23-28,
2021. ACM, 2021, pp. 919–931.

[11] M. Liu, S. Yu, X. Peng, X. Du, T. Yang, H. Xu, and G. Zhang,
“Knowledge graph based explainable question retrieval for programming
tasks,” 2023.

444

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

[12] C. Wang, X. Peng, Z. Xing, Y. Zhang, M. Liu, R. Luo, and X. Meng,
“Xcos: Explainable code search based on query scoping and knowledge
graph,” ACM Transactions on Software Engineering and Methodology,
2023.

[13] (2023) Replication package. [Online]. Available: https://github.com/
FudanSELab/codegen4libs

[14] (2023) Github code dataset. [Online]. Available: https://huggingface.co/
datasets/codeparrot/github-code

[15] (2023) javalang. [Online]. Available: https://github.com/c2nes/javalang
[16] (2023) Jdk 8 documentation. [Online]. Available: https://docs.oracle.

com/javase/8/docs/api/overview-summary.html
[17] (2023) Android api reference. [Online]. Available: https://developer.

android.com/reference
[18] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping language to

code in programmatic context,” arXiv preprint arXiv:1808.09588, 2018.
[19] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,

V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Association for Computational Linguistics, 2020, pp. 7871–7880.

[20] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[21] (2023) microsoft/codegpt-small-java-adaptedgpt2. [Online]. Available:
https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2

[22] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
pp. 140:1–140:67, 2020.

[23] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, and L. Zhang, “An extensive
study on pre-trained models for program understanding and generation,”
in ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022.
ACM, 2022, pp. 39–51.

[24] (2023) Zzr0/issta22-codestudy. [Online]. Available: https://github.com/
ZZR0/ISSTA22-CodeStudy

[25] (2023) Ahmedssoliman/codexglue-concode. [Online]. Available: https:
//huggingface.co/datasets/AhmedSSoliman/CodeXGLUE-CONCODE

[26] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,
A. Blanco, and S. Ma, “Codebleu: a method for automatic evaluation of
code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[27] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” ArXiv, vol. abs/2102.04664,
2021.

[28] H. Li, Y. Su, D. Cai, Y. Wang, and L. Liu, “A survey on retrieval-
augmented text generation,” arXiv preprint arXiv:2202.01110, 2022.

[29] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Retrieval augmented code generation and summarization,” ArXiv, vol.
abs/2108.11601, 2021.

[30] E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang, and
H. Sun, “Race: Retrieval-augmented commit message generation,” in
Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, 2022, pp. 5520–5530.

[31] S. E. Robertson and S. Walker, “Some simple effective approximations to
the 2-poisson model for probabilistic weighted retrieval,” in Proceedings
of the 17th Annual International ACM-SIGIR Conference on Research
and Development in Information Retrieval. Dublin, Ireland, 3-6 July
1994 (Special Issue of the SIGIR Forum). ACM/Springer, 1994, pp.
232–241.

[32] C. Niu, C. Li, V. Ng, D. Chen, J. Ge, and B. Luo, “An empirical
comparison of pre-trained models of source code,” in 45th IEEE/ACM In-
ternational Conference on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023. IEEE, 2023, pp. 2136–2148.

[33] (2023) Elasticsearch. [Online]. Available: https://github.com/elastic/
elasticsearch

[34] (2023) Transformers. [Online]. Available: https://github.com/huggingface/
transformers

[35] (2023) Salesforce/codet5-base. [Online]. Available: https://huggingface.
co/Salesforce/codet5-base

[36] C. Yang, Y. Liu, and C. Yin, “Recent advances in intelligent source
code generation: A survey on natural language based studies,” Entropy,
vol. 23, 2021.

[37] J. Shin and J. Nam, “A survey of automatic code generation fromnatural
language,” J. Inf. Process. Syst., vol. 17, pp. 537–555, 2021.

[38] X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Classeval: A manually-crafted benchmark
for evaluating llms on class-level code generation,” arXiv preprint
arXiv:2308.01861, 2023.

[39] Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and X. Peng,
“No more manual tests? evaluating and improving chatgpt for unit test
generation,” arXiv preprint arXiv:2305.04207, 2023.

[40] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kociský,
F. Wang, and A. W. Senior, “Latent predictor networks for code
generation,” ArXiv, vol. abs/1603.06744, 2016.

[41] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen:
A tree-based transformer architecture for code generation,” ArXiv, vol.
abs/1911.09983, 2019.

[42] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of the Association for
Computational Linguistics: EMNLP 2020, Online Event, 16-20 November
2020, ser. Findings of ACL, vol. EMNLP 2020. Association for
Computational Linguistics, 2020, pp. 1536–1547.

[43] D. Fried, A. Aghajanyan, J. Lin, S. I. Wang, E. Wallace, F. Shi, R. Zhong,
W. tau Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative model
for code infilling and synthesis,” ArXiv, vol. abs/2204.05999, 2022.

[44] D. Zan, B. Chen, Y. Gong, J. Cao, F. Zhang, B. Wu, B. Guan, Y. Yin, and
Y. Wang, “Private-library-oriented code generation with large language
models,” arXiv preprint arXiv:2307.15370, 2023.

[45] D. Zan, B. Chen, Z. Lin, B. Guan, Y. Wang, and J. Lou, “When
language model meets private library,” in Findings of the Association for
Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022. Association for Computational
Linguistics, 2022, pp. 277–288.

[46] D. Zan, B. Chen, D. Yang, Z. Lin, M. Kim, B. Guan, Y. Wang, W. Chen,
and J. Lou, “CERT: continual pre-training on sketches for library-oriented
code generation,” in Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29
July 2022. ijcai.org, 2022, pp. 2369–2375.

[47] S. Liu, Y. Chen, X. Xie, J. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid gnn,” arXiv preprint
arXiv:2006.05405, 2020.

[48] S. Lu, N. Duan, H. Han, D. Guo, S. Hwang, and A. Svyatkovskiy, “Reacc:
A retrieval-augmented code completion framework,” in Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022.
Association for Computational Linguistics, 2022, pp. 6227–6240.

[49] J. Li, Y. Li, G. Li, Z. Jin, Y. Hao, and X. Hu, “Skcoder: A sketch-based ap-
proach for automatic code generation,” arXiv preprint arXiv:2302.06144,
2023.

[50] F. Zhang, B. Chen, Y. Zhang, J. Liu, D. Zan, Y. Mao, J.-G. Lou, and
W. Chen, “Repocoder: Repository-level code completion through iterative
retrieval and generation,” arXiv preprint arXiv:2303.12570, 2023.

[51] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
ArXiv, vol. abs/1909.09436, 2019.

[52] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 international symposium on software testing
and analysis, 2014, pp. 437–440.

445

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on November 14,2023 at 07:14:57 UTC from IEEE Xplore. Restrictions apply.

