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Abstract—AI applications often use ML/DL (Machine Learning/Deep Learning) models to implement specific AI tasks. As application
developers usually are not AI experts, they often choose to integrate existing implementations of ML/DL models as libraries for their AI
tasks. As an active research area, AI attracts many researchers and produces a lot of papers every year. Many of the papers propose
ML/DL models for specific tasks and provide their implementations. However, it is not easy for developers to find ML/DL libraries that are
suitable for their tasks. The challenges lie in not only the fast development of AI application domains and techniques, but also the lack of
detailed information of the libraries such as environmental dependencies and supporting resources. In this paper, we conduct an
empirical study on ML/DL library seeking questions on Stack Overflow to understand the developers’ requirements for ML/DL libraries.
Based on the findings of the study, we propose a task-oriented ML/DL library recommendation approach, called MLTaskKG. It constructs
a knowledge graph that captures AI tasks, ML/DL models, model implementations, repositories, and their relationships by extracting
knowledge from different sources such as ML/DL resource websites, papers, ML/DL frameworks, and repositories. Based on the
knowledge graph, MLTaskKG recommends ML/DL libraries for developers by matching their requirements on tasks, model characteristics,
and implementation information. Our evaluation shows that 92.8% of the tuples sampled from the resulting knowledge graph are correct,
demonstrating the high quality of the knowledge graph. A further experiment shows that MLTaskKG can help developers find suitable
ML/DL libraries using 47.6% shorter time and with 68.4% higher satisfaction.
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1 INTRODUCTION

NOWADAYS, more and more software applications in-
tegrate some kinds of AI capabilities to implement

innovative requirements, e.g., intelligent human-computer
interaction [1], [2], [3], recommendation [4], [5], and decision
making [6], [7]. These AI applications often use ML/DL
(Machine Learning/Deep Learning) models to implement
specific AI tasks such as text classification [8], [9], facial
recognition [10], [11], and image classification [12], [13]. As
application developers usually are not AI experts, they often
choose to reuse existing implementations of ML/DL models.
To this end, the developers need to find suitable ML/DL
models for their AI tasks and integrate the implementations
as libraries.

As an active research area, AI attracts many researchers
and produces a lot of papers every year. For example, in 2019
more than 120 thousand peer-reviewed AI papers have been
published in conferences and journals and the number keeps
growing [14]. These papers cover major AI technical fields
such as computer vision (CV) [15], [16], natural language
processing (NLP) [17], [18], speech processing (SP) [19],
[20], and autonomous driving (AD) [21], [22]. A large part
of these papers target specific AI tasks, propose ML/DL
models for these tasks, and provide their implementations
as open-source projects. Application developers could reuse
those open-source projects with implementations of ML/DL
models in different ways. If the open-source project has a
release package (e.g., the PyPi package), it can be directly
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integrated and used by developers through APIs. If the
open-source project does not provide a release package but
provides the model implementation and the trained model,
developers can integrate the model implementation into
their projects and directly reuse the trained model. In other
cases, developers need to retrain the model on top of the
integrated model implementation. In this paper, we define
ML/DL libraries as projects that provide ML/DL model
implementations for AI tasks.

Although many ML/DL models and implementations
are available, it is not easy for application developers to
find and use ML/DL libraries that are suitable for their AI
tasks. The challenges lie in two aspects. First, AI application
domains and techniques are still in rapid development and
new innovative tasks keep emerging. For example, sentence
simplification [23], [24], which simplifies the grammar and
structure of a sentence while keeping the underlying infor-
mation identical, is a relatively new text processing task as
a variant of text summarization. Unlike popular tasks (e.g.,
text classification) which have well-known ML/DL models
and libraries (e.g., fastText [25]), models and libraries for
these new tasks may only be presented in a few papers
and are not easy to find. Second, developers often need to
consider a series of factors when choosing ML/DL libraries.
For example, they may be concerned about the performance
on recognized indicators, important components (e.g., CNN,
RNN, and attention), environmental dependencies (e.g.,
language, ML/DL frameworks, OS, and hardware), and the
availability of datasets, trained models, and test code. This
detailed information of the libraries is scattered and implied
in different sources (e.g., papers, documentation, and source
code), thus is hard to collect.

In the AI community researchers have built through
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crowdsourcing PapersWithCode1, a free and open resource
with ML/DL papers and code, but it is hard for application
developers to find the desired models and libraries from
PapersWithCode. First, its AI task categories cannot well
match the targeted tasks of application developers. Paper-
sWithCode provides a hierarchy of AI tasks, but some of the
tasks are not specific enough for application development.
For example, software named entity recognition is not
defined as a task and related papers are categorized into
the more general task named entity recognition. Second,
it lacks detailed information about the implementations of
ML/DL models. PapersWithCode provides links to open-
source repositories for some SOTA (State-Of-The-Art) models,
but does not collect important information required by
application developers such as environmental dependencies.
There are also open-source projects (called AwesomeLists)
that provide curated lists of resources dedicated to specific AI
technical fields (e.g., awesome-nlp2). These lists include some
recommended libraries for popular tasks, but only cover a
small part of the tasks that application developers require.

To understand the requirements of application developers
for ML/DL libraries, we conduct an empirical study on a
set of sampled Stack Overflow questions about ML/DL
models and implementations. The results show that the
developers are concerned about a variety of factors when
seeking solutions for their AI tasks. These factors are related
to both the ML/DL models (e.g., ML/DL components, model
performance, and datasets) and their implementations (pro-
gramming language, open source, and ML/DL frameworks).

Based on the findings of the study, we propose a task-
oriented ML/DL library recommendation approach, called
MLTaskKG. It constructs a knowledge graph (KG for short)
that captures AI tasks, ML/DL models, model implementa-
tions, and their relationships by extracting knowledge from
PapersWithCode, AwesomeLists, ML/DL papers, ML/DL
frameworks, and open-source repositories. Based on the
KG, MLTaskKG recommends ML/DL libraries for applica-
tion developers by matching their requirements on tasks,
model characteristics, and environmental dependencies with
the knowledge collected in the KG. Note that while ML-
TaskKG may be especially useful for application developers
who are beginners in the ML/DL domain, it can also be
helpful for experienced practitioners who are seeking to
implement models in new fields or tasks.

We implement MLTaskKG and build an AI task-model
knowledge graph, which includes 17,250 AI tasks, 25,404 pa-
pers, 25,718 models, and 24,047 repositories. Our evaluation
shows that the quality of the resulting knowledge graph is
generally high, indicated by the correctness of 92.8% for the
sampled tuples. Further, our tool can help developers find
suitable ML/DL with 68.4% higher satisfaction and using
47.6% shorter time compared with those using PapersWith-
Code.

Significance. Our AI task-model KG links AI tasks,
ML/DL models, and their implementations in a knowledge-
based way and captures the environmental dependencies and
supporting resources of the implementations. It thus can help
to bridge the gap between AI researchers and application

1. https://paperswithcode.com
2. https://github.com/keon/awesome-nlp

developers and facilitate the large-scale reuse of ML/DL
models and libraries.

2 BACKGROUND

A typical form of AI papers is to design and implement a
new ML/DL model for a specific AI task. The task can be a
well-studied one, which has much previous research or an
innovative one for a new application domain or scenario. The
model is often designed based on some standard components
such as neural networks (e.g., CNN, RNN) and additional
layers (e.g., attention). The paper usually describes the
targeted task and the proposed model (with a specific name)
in its title and abstract. To validate the proposed model,
the authors usually implement the proposed model and
compare it with existing ones. To facilitate comparison and
reproduction, the authors often share their implementation in
repositories hosted on open-source platforms such as GitHub
and provide a link to the repository in the paper.

The authors of a paper often implement their model based
on a common ML/DL framework such as TensorFlow3 and
PyTorch4 and the implementation may depend on a specific
version of the framework. Moreover, the implementation may
depend on some third-party libraries. A version of an ML/DL
framework may have specific requirements on hardware and
operating system. For example, PyTorch does not support
Windows versions lower than 7. To help users deploy and
run their implementations, the authors may describe various
usage guidelines in the ReadMe file of the repository, e.g., the
dependencies of the model implementation and guidelines
for training and prediction. If a trained model is available,
the ReadMe file may also provide a link for download. In
addition to the implementation provided by the authors,
other people may also reproduce the model and share their
implementations in open-source repositories. Some standard
implementations of popular tasks such as text classification
and image classification may also be included in some
common ML/DL libraries (e.g., fastText).

AwesomeLists are a special kind of projects on GitHub,
which provide curated lists of resources dedicated to different
topics. There are AwesomeLists for specific AI technical fields
such as CV and NLP. For example, awesome-nlp lists books,
courses, libraries, and other resources for NLP. For each of
the recommended libraries, a note is provided describing the
implemented tasks and the implementation language.

PapersWithCode is a website for sharing ML/DL papers
and code. It defines a hierarchy of AI tasks by crowdsourcing
and the top-layer tasks include CV, NLP, SP, and others. The
main users of PapersWithCode are AI researchers and one of
its main purposes is to help researchers learn related papers
and compare with the SOTA models. Therefore, for each task
it collects a set of datasets and for each dataset provides an
evaluation table providing a set of SOTA models ranked by
specific metrics together with the papers. For each paper with
code, it provides links to the corresponding repositories.

3 EMPIRICAL STUDY

We conducted an empirical study on a set of sampled Stack
Overflow questions about ML/DL models and implementa-

3. https://www.tensorflow.org
4. https://pytorch.org
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TABLE 1
Factors for Selecting ML/DL Libraries

Factor Definition Subject Example #Q
Programming Language the programming languages used by the implementation Implementation Python, Java 151

Open Source whether the implementation is open-sourced Implementation open-source implemen-
tation 49

Model Performance the performance of the model on the target task Model best model 45
ML/DL Framework the ML/DL framework that the implementation is based on Implementation PyTorch, TensorFlow 43
Operating System the operating systems that the implementation supports Implementation Android, iOS 37
ML/DL Component common ML/DL components that are included in the model Model CNN, LSTM, attention 32
Hardware the hardware that the implementation supports Implementation GPU 28
Usability the usability of the implementation Implementation easy to use 25
Model Characteristic the characteristic of the model Model real-time prediction 21
Dataset the publicly available datasets that can be used for the model Model ImageNet 10
Implementation Quality the quality of the implementation Implementation well-maintained 9

tions to understand the requirements of application develop-
ers. This section reports the data preparation, protocol, and
results of the study.

3.1 Data Preparation

The focus of the empirical study is on the developers’
requirements for ML/DL libraries. Therefore, we use the
following criteria to select Stack Overflow questions for the
study:

1) tagged with “machine-learning”, “deep-learning”, or
any of the known AI tasks;

2) question title or body containing any of the known AI
tasks;

3) question body containing no code snippets (i.e., text
wrapped in <pre><code></code></pre>);

4) question title and body containing no “error” or
“exception”.

We first obtain questions that meet all the above criteria
from the Stack Overflow data dump [26] as a population,
resulting in 68,501 questions. We then randomly select 1,000
questions from the population for the study. The first two
criteria are to ensure that the sampled questions are related
to AI tasks. The known AI tasks here mean the tasks that
are collected in the task categories of PapersWithCode,
which are included in our replication package [27]. The last
two criteria are to filter out questions about more detailed
implementation issues.

Then we invite two master students (not authors) to
independently check the selected questions to filter out those
that are not related to the seeking of ML/DL libraries. The
two students both have taken at least two courses on AI and
have at least one year of AI development experience. The
manual checking results in 283 questions that are confirmed
to be relevant by both students with a Cohen’s Kappa
agreement [28] of 0.664 and squared Kappa of 0.441, i.e.,
moderate agreement. We found that disagreements often
occurred when the students overlooked some parts of very
long questions or students had a different understanding of
AI-related knowledge. One of the authors was assigned to
resolve the conflict by a majority-winning strategy after the
discussion.

We find most of these questions focus on major AI tasks
such as computer vision (41.7%), natural language processing
(27.9%), speech processing (13.4%), and data mining (12.0%).

Among these questions, 54.4% have no accepted answers. Al-
though the final purposes of these questions are mostly some
kind of implementations that can be used directly or after
adaptation, some askers may first ask for ML/DL models
(also mentioned as algorithms, approaches, and methods) for
specific tasks and then learn about the implementations that
can be used in the follow-up discussions. The others directly
ask about the implementations (also mentioned as libraries,
projects, and repositories) that can be used for specific AI
tasks.

3.2 Protocol

The requirements of application developers for ML/DL
libraries are embodied by a set of factors that are considered
in the selection of ML/DL libraries. Therefore, we ask two
master students (the same as students in Section 3.1 for
question selection) to further annotate the factors for ML/DL
library selection from the 283 Stack Overflow questions using
iterative closed coding. Note that the requirements of a
developer are reflected not only in the question title and
body but also in the follow-up discussions. For example, the
asker of a question may comment on a suggested solution
to express additional concerns. Therefore, we ask the two
annotators to read both the question title/body and the
follow-up discussions to have a complete understanding of
the requirements of the asker.

The coding starts with an initial code, i.e., model perfor-
mance, which means the performance of the model on the
target task. For a Stack Overflow question the annotators
may identify multiple factors. If an identified factor is not
included in existing codes, we create a new code or revise the
definitions and names of existing codes to accommodate it.
When a new code is created or an existing code is revised, we
re-annotate all the questions that have been annotated before.
The two annotators conduct the annotation independently.
If they identify different factors for the same question, a
third student is assigned to make an additional annotation
to resolve the conflict by a majority-win strategy.

3.3 Results

The study results in 11 factors for ML/DL library selection
with a Cohen’s Kappa coefficient 0.810 and squared Kappa of
0.656, i.e., almost perfect agreement. We found the disagree-
ments often occurred when the students overlooked some
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parts of very long questions, which can easily be resolved
through discussion. Table 1 shows the information of the
11 factors, including definition, subject, example, and the
number of questions involving the factor.

It can be seen that the developers are concerned about a
variety of factors when seeking solutions for their AI tasks.
Four factors are related to the ML/DL models. Among them,
model performance (15.9%), ML/DL component (11.3%) and
model characteristic (7.4%) are the three most concerned
factors. The other seven factors are related to the implemen-
tations of the models. Among them, programming language
(53.4%), open source (17.3%), and ML/DL framework (15.2%)
are the three most-cited factors.

From the questions, we can see that developers have
different concerns and preferences. Some developers care
about the model performance (e.g., SOTA models) and used
common components (e.g., LSTM). Some others do not care
about these, but those factors related to the deployment
and usage of the implementations such as programming
language, AI framework, and other dependencies. Therefore,
it is necessary to incorporate knowledge of various levels (e.g.,
model, implementation) and support application developers
with task-oriented and knowledge-based ML/DL library
recommendation.

4 AI TASK-MODEL KG CONSTRUCTION

MLTaskKG is based on a semi-automatically constructed AI
task-model KG. In this section, we describe the approach for
the KG construction and then introduce the resulting KG.

4.1 Overview

The AI task-model KG is designed for ML/DL library
selection and recommendation, so the KG needs to describe
the relationships between AI tasks, ML/DL models, and
their implementations and cover those factors identified in
the empirical study. Therefore, we design the schema of the
KG as shown in Figure 1. In the figure, rounded rectangles
represent different types of entities in the KG and arrows
represent the relationships between different types of entities.

AI tasks constitute a conceptual hierarchy based on their
generalization/specialization relationships. For example,
extractive text summarization is a specialization of text
summarization. An AI task can be accomplished by an
ML/DL model which is proposed in a paper and may have
been evaluated with specific datasets. An ML/DL model
may use existing ML/DL components (e.g., CNN, LSTM,
attention) and has its implementation. The implementation
is often based on a specific version of a common ML/DL
framework (e.g., PyTorch, TensorFlow), and supports specific
programming languages and running environments such as
hardware (e.g., GPU) and operating systems (e.g., Android,
iOS). The implementation may be provided in an open-source
repository with a specific license. Besides relationships,
each entity type can have some attributes. For example, a
repository has attributes such as stars and URLs.

To construct such a KG, we design an approach that
extracts various entities and relationships from different
sources and fuses them together. Figure 2 presents an
overview of the approach. The top layer, middle layer, and

bottom layer of the figure describe the knowledge sources,
the main steps, and the corresponding parts of the KG,
respectively. The approach uses the following knowledge
sources.

• PapersWithCode: A website for sharing ML/DL
papers and code, which includes a set of AI tasks
and the corresponding papers and datasets.

• ML/DL papers: Papers that propose ML/DL models
for specific AI tasks.

• Repositories: Open-source repositories that provide
the implementations for ML/DL models.

• AwesomeLists: A special kind of projects on GitHub,
which include curated lists of libraries for specific AI
tasks.

• ML/DL Framework Docs: The documentations of
ML/DL frameworks, which describe the required
running environments for the frameworks.

The approach includes three steps. Task-model Knowl-
edge Extraction extracts knowledge about tasks and models
from both PapersWithCode and ML/DL papers. PapersWith-
Code has already defined a hierarchy of AI tasks with a
large number of AI tasks. For each task, it collects one or
several SOTA models for different datasets together with the
corresponding papers. We parse the PapersWithCode data
and extract this knowledge. Based on the knowledge, we
further analyze a large corpus of ML/DL papers to extract
more AI tasks and models. We combine these two parts of
AI tasks to form the AI task hierarchy of the KG. Framework
Knowledge Extraction extracts knowledge about the running
environments required by different versions of popular
ML/DL frameworks (e.g., PyTorch, TensorFlow). This step
is manually done based on the documentation of the frame-
works. Based on the extracted task-model knowledge and
framework knowledge, Repository Knowledge Extraction
extracts knowledge about the implementations of ML/DL
models and the corresponding open-source repositories. The
data analyzed include the metadata (e.g., repository star,
last update time), ReadMe files, and source code of the
repositories.

The knowledge (including entities and their relationships)
extracted from different sources is linked together following
the schema shown in Figure 1, resulting in the AI task-model
KG.

4.2 Task-Model Knowledge Extraction
We first extract basic knowledge about AI tasks and ML/DL
models from PapersWithCode, then extend the knowledge
by analyzing ML/DL papers, and finally integrate these two
parts of knowledge.

4.2.1 Task-Model Knowledge Extraction from PapersWith-
Code
The knowledge extraction from PapersWithCode includes
two parts. First, we develop a web crawler using Scrapy5

to extract the AI tasks and their hierarchical relationships
from the website of PapersWithCode. Second, we analyze
the daily updated data dump of PapersWithCode6 to extract

5. https://github.com/scrapy/scrapy
6. https://github.com/paperswithcode/paperswithcode-data
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Fig. 1. AI Task-Model KG Schema
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Fig. 2. Overview of AI Task-Model KG Construction

related datasets and SOTA models, and common ML/DL
components. The data dump provides a list of datasets for
each AI task and for each dataset an evaluation table with a
set of SOTA models ranked by specific metrics. For example,
MatchSum is a SOTA model for the text summarization
task, which is ranked first for the BBC XSum dataset by
the metric ROUGE. The data dump also includes a set of
common ML/DL components such as CNN, RNN, LSTM,
and BiLSTM. We organize all the above knowledge based on
the schema shown in Figure 1.

4.2.2 Task-Model Knowledge Extraction from ML/DL Papers

The purpose of ML/DL paper analysis is to extend the
tasks and models extracted from PapersWithCode. We crawl
a corpus of ML/DL papers from major AI conferences,
including CVPR, ICCV, ECCV, ACL, and EMNLP, for further
analysis. These papers were published from 2011 to 2020. A
reason for choosing these conferences is that their papers
focus more on specific AI tasks of different domains (e.g., CV,
NLP). For each paper, we extract its title, abstract, authors,
conference, year of publication, and citation number. If
the full text (PDF format) of a paper is available, we also

download the full text. As a result, we obtain 20,653 papers
and 14,200 of them have full text.

ML/DL papers often highlight the targeted AI tasks
and proposed ML/DL models in their titles or abstracts.
For example, the title “AttentionXML: Label Tree-based
Attention-Aware Deep Model for High-Performance Extreme
Multi-Label Text Classification” of a paper includes the
targeted task “multi-label text classification” and the name
of the proposed model “AttentionXML”. Therefore, we use a
deep learning model to extract AI tasks and ML/DL models
from the titles and abstracts.

We treat the problem as a named entity recognition (NER)
task, where AI tasks and ML/DL models are the two types
of entities to be recognized. A common solution for the task
is using a sequence tagging model which accepts a word
sequence as input and predicts a tag for each word. Named
entities can then be recognized by interpreting the tags of
words. We use the BIO tagging scheme: “B” (“Beginning”)
and “I” (“Inside”) respectively indicate the beginning and
middle/end of an entity, and “O” (“Outside”) indicates a
normal word. Thus, our NER task defines the following
five tags: “B-Task” and “I-Task” indicate the begging and
middle/end of a subsequence for an AI task; “B-Model”
and “I-Model” indicate the begging and middle/end of a
subsequence for an ML/DL model; “O” indicates a normal
word that is not a part of the task or model. For the title
mentioned above, the tagging of the whole word sequence is
shown in Figure 3. “AttentionXML” is tagged with “B-Model”
(i.e., the blue part), while “multi-label text classification” is
tagged with “B-Task I-Task” (i.e., the green part).

We implement and train a sequence tagging model
BERT-BiLSTM for the task. It includes three layers: BERT
(Bidirectional Encoder Representations from Transformers)
layer, Bi-LSTM (Bidirectional Encoder Representations from



SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

AttentionXML

B-Model O

: Label Tree-based Attention-Aware

O OO

Deep Model

for High-Performance Extreme Multi-Label Text Classification

O O

O O O B-Task I-Task I-Task
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Transformers) layer, and FC (Fully Connected) layer. The
BERT layer is an embedding layer that converts each input
word to a fixed-size vector using the pretrained language
model [29]. BERT is pretrained on a large corpus and its
vector representation can well capture the semantics of
a word in different contexts. The Bi-LSTM layer further
encodes and combines the vectors of a word and its left
context and right context to prepare the input for the FC
layer. The FC layer performs the final prediction based on
the encoded vectors of all words. We implement the model
based on PyTorch 1.8.1 and use SciBERT [30] for the BERT
layer, which is pretrained on scientific text from papers and
achieves the SOTA performance on a wide range of NLP
tasks in the scientific domain. The SciBERT model used in
our implementation is obtained from HuggingFace7.

Given an ML/DL paper, we concatenate its title and
abstract as the input word sequence. To indicate the two
different parts in the sequence, we add a label “[TITLE]”
and “[ABSTRACT]” at the beginning of the title and abstract
respectively. To train the sequence tagging model we ask four
master students to annotate a set of sampled ML/DL papers
by identifying the AI tasks and ML/DL models mentioned
in the titles and abstracts. The four students have taken at
least two courses on AI and have at least one year of AI
development experience. The annotation is done with an
online annotation tool doccano [31]. As a result, we obtain
800 annotated papers for the training.

We use the trained model to predict the tags of words
of the titles and abstracts of all the other papers and extract
the subsequences that are tagged as tasks or models. We
treat the extracted tasks and models as the recognized AI
tasks and ML/DL models of the given papers. We conducted
experiments on a test dataset to evaluate the accuracy of
our model in extracting AI tasks and ML/DL models. The
accuracy of task extraction was found to be 0.74 and the
accuracy of model extraction was 0.82. These results indicate
an acceptable performance, considering the complexity and
variability of natural language texts.

4.2.3 Task-Model Knowledge Integration
The basic task structure extracted from PapersWithCode is
treated as the task hierarchy of the KG. Then we take an
iterative process to incorporate each of the AI tasks extracted
from the papers into the task hierarchy. For each AI task
extracted from papers, we first match it with the existing
task hierarchy. If the task matches an existing task (full
name or aliases), we merge them together. Otherwise, we
create a new AI task and insert it into the task hierarchy. As
the hierarchy of AI tasks defined by PapersWithCode has
covered most of the popular tasks, it is likely that the new
task extracted from papers is the specialization of an existing

7. https://huggingface.co/allenai/scibert_scivocab_uncased

task. Therefore, we decide the position of the new task in
the task hierarchy in the following way. For a new task T ,
we calculate its similarity with each of the existing tasks in
the task hierarchy. The similarity is obtained by calculating
the cosine similarity between the vector representations of
two tasks generated by averaging their word vectors. The
word vectors are produced by a 100-dimensional Word2Vec
model trained on the abstracts of all the papers we collected.
We train the Word2Vec model by using gensim [32], whose
dimensions are determined based on conventions in NLP8.
Based on the similarity calculation, we find an existing task
T ′ having the highest similarity with T as the candidate for
the following processing.

1) If the similarity between T and T ′ is lower than a
threshold (e.g., 0.75 in our implementation), T is not similar
enough to a specific task of the existing task hierarchy and
thus can only be added as a specialization of one of the
top-layer tasks (e.g., CV, NLP) according to the domain of
the corresponding paper (e.g., ICCV papers belong to the CV
domain).

2) If the similarity is no lower than the threshold and T ′ is
a substring of T , T can be added as a specialization of T ′. For
example, an AI task “Software Named Entity Recognition”
extracted from papers is added as the specialization of
“Named Entity Recognition” in the task hierarchy.

3) If the similarity is no lower than the threshold and T ′

is not a substring of T , T can be treated as a sibling task of
T ′ and added as a specialization of the parent task of T ′.

4.3 Framework Knowledge Extraction

We collect 18 popular ML/DL frameworks, including Py-
Torch, TensorFlow, DeepLearning4J, Keras, Caffe, CNTK,
MXNet, Theano, TFLearn, PaddlePaddle, Chainer, Neon,
Lasagne, Sonnet, BigDL, Dlib, PlaidML, and SINGA. These
frameworks cover different programming languages, e.g.,
TensorFlow and PyTorch are for Python and DeepLearning4j
is for Java. For each of them, we manually analyze its
documentation to identify its versions, e.g., PyTorch 1.4.0.
For different versions of the framework, we further extract
the following knowledge.

• Programming Language: programming languages in
which the framework is developed, e.g., Python, Java.

• Operating System: systems on which the framework
can be installed, e.g., CentOS, Debian, macOS, An-
droid, iOS.

• Hardware: physical components supported by the
framework, e.g., RTX 3060, GTX 1070.

• Computing Platform: a platform for parallel comput-
ing of the framework, e.g., CUDA, ROCm.

• ML/DL components: common ML/DL components
that have been implemented in the framework.

Note that environmental dependencies are usually related
to specific versions. For example, CUDA 10.1 supports
PyTorch 1.4.0; PyTorch 1.3.0 and higher versions support
Android and iOS.
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TABLE 2
Implementation Knowledge Types and Their Sources

Knowledge Type Knowledge Source Corresponding Factor Knowledge Type Knowledge Source Corresponding Factor
Star Number Meta Implementation Quality Fork Number Meta Implementation Quality
Watch Number Meta Implementation Quality Issue Number Meta Implementation Quality
License Meta Open Source Homepage URL Meta Implementation Quality/Usability
Last Update Time Meta Implementation Quality Operating System ReadMe Operating System
Hardware ReadMe Hardware Dataset ReadMe Dataset
ML/DL Framework Code, ReadMe ML/DL Framework Programming Language Meta, ReadMe Programming Language

Third-Party Library Code, ReadMe Implementation Quality,
Third-Party Library Release Package ReadMe Implementation Quality/Usability
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Fig. 4. Overview of Repository Knowledge Extraction

4.4 Repository Knowledge Extraction

To extract knowledge about implementations, we first obtain
the repository links of ML/DL model implementations and
then extract various knowledge from different sources. An
overview of the repository knowledge extraction process is
shown in Figure 4. Table 2 shows the sources of different
types of implementation knowledge and the corresponding
factors for selecting ML/DL libraries (see Table 1). The
implementation knowledge is extracted from the following
three sources.

• Meta: the meta information of a repository, e.g., start
number, fork number.

• ReadMe: the ReadMe file of a repository.
• Code: the source code of a repository.

Moreover, the environmental dependencies of a model
implementation can be inferred from those of an ML/DL
framework. For example, if a model implementation is based
on PyTorch 1.4.0, we can infer that the implementation
supports Linux because PyTorch 1.4.0 supports Linux.

4.4.1 Repository Links Extraction

For each ML/DL model, we obtain the links of its repository
from the corresponding paper using the following four
strategies. Given a paper, we try to obtain the repository
links for its model implementation in the following ways.

• PapersWithCode. If the paper is included in the data
dump of PapersWithCode, the repository links may
also be included. If the links are available, we obtain
them directly.

• Paper Abstract Analysis. Some ML/DL papers men-
tion the repository links in their abstracts. Therefore,

8. https://moj-analytical-services.github.io/NLP-
guidance/NNmodels.html

we use regular expressions to find possible repository
links mentioned in the abstract of the paper.

• Paper Body Analysis. Some ML/DL papers provide
the repository links in the body (including footnotes)
of the paper. We analyze the PDF file of the paper (if
available) using PDFMiner9 and treat the first URL to
GitHub as the repository link.

• GitHub Searching. Some repositories implementing
ML/DL models mention the titles of the correspond-
ing papers in their descriptions. We search GitHub
with the title of the paper using GitHub APIs to obtain
the top-10 related repositories. Then we analyze the
returned repositories and treat those mentioning the
paper title in their ReadMe files as the repositories.

We develop a tool to obtain the repository link of a paper
using the above four strategies. It tries the strategies in order
and stops when a repository link is found. On the other hand,
we extract 827 ML/DL libraries with GitHub repository links
from the related AwesomeLists (i.e., awesome nlp, awesome
computer vision, awesome machine learning and awesome
deep learning). These libraries provide recognized imple-
mentations for popular ML/DL models and AI tasks. As
AwesomeLists does not explicitly state the ML/DL models
that are implemented by each library, we need to recover
the links between the library and the corresponding ML/DL
models. We find the names of ML/DL models often appear
in the class names of the corresponding implementations.
Based on the findings, we identify ML/DL models that
are implemented in a library by calculating the Jaccard
similarity [33] between the class names of the library and the
names of the ML/DL models in the KG. Before the similarity
calculation, the preprocessing steps of the class name are as
follows: camel case splitting, lowercase and lemmatization.
If the similarity between the name of an ML/DL model and
the class name with the highest Jaccard similarity is no lower
than a threshold (e.g., 0.4 in our implementations), we treat
the library as an implementation of the model and add the
relationship into the KG.

4.4.2 Meta Information Extraction
To extract the meta information of a repository, we use
PyGitHub10 (a Python library) to access the GitHub REST
APIs. The extracted information includes star number, fork
number, watch number, issue number, license, programming

9. https://github.com/euske/pdfminer
10. https://github.com/PyGithub/PyGithub
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language, homepage URL, and last update time. Our current
implementation only supports GitHub, as it relies on GitHub
APIs to get the meta information and ReadMe files of
repositories. It is easy to extend the implementation to
support other platforms if their APIs are available.

4.4.3 ReadMe File Analysis

GitHub repositories usually include a ReadMe file which con-
tains important information about the deployment and usage
of the software such as environmental dependencies [34].
Given a ReadMe file we extract implementation knowledge
from it in the following two ways.

First, we extract implementation knowledge based on
environment-related entities in the KG. These entities include
the operating system, hardware, dataset, programming
language, and ML/DL framework. If these entities are
mentioned in the ReadMe file, we further use regular
expressions to extract possible versions mentioned with the
entities and add the corresponding relationships into the KG.
For example, if “PyTorch” is mentioned we further extract the
version “1.1.0” mentioned together with it and add a “sup-
port” relationship from the current model implementation to
“PyTorch 1.1.0”.

Second, we extract implementation knowledge using pre-
defined patterns. ReadMe files often follow some patterns to
describe certain implementation knowledge. These patterns
involve not only linguistic patterns in the text but also the
section structure, hyperlinks, and code blocks of the ReadMe
file. For example, third-party library dependencies are often
described after a title named “requirement”, “dependency”,
“dependencies”, or “environment”. To collect such patterns
we manually analyze 100 sampled ReadMe files and sum-
marize a set of patterns for the extraction of the following
knowledge.

• Third-Party Library: dependencies of third-party
Libraries.

• Release Package: the release package of the current
implementation, e.g., a python package shared on
PyPi11.

• Trained Model: an instantiated ML/DL model
trained using the implementation and certain dataset,
which can be used directly.

• Command: commands that can be used to run the
implementation, for example, for training a new
model or load an existing model.

A complete list and descriptions of the patterns can be
found in our replication package [27].

4.4.4 Source Code Analysis

From the source code of the implementation of an ML/DL
model, we extract the following knowledge about the imple-
mentation.

• ML/DL Framework. We analyze the import state-
ments of the source files. If an ML/DL framework
is imported, we consider that the implementation is
based on the framework.

11. https://pypi.org/

• Third-Party Library. We analyze the dependencies
declared in the implementation, e.g., the “require-
ment.txt” of Python projects, to extract the dependen-
cies on third-party libraries.

• Documents. We extract documents from the source
directories named “doc” or “docs”.

• Example Script. We extract example scripts from the
source directories named “example” or “examples”.

• Test Code. We extract test code from 1) directories
named “test” or “tests”; source files whose names
contain “test”; or 3) classes whose names contain
“test”.

• ML/DL Component. We first locate the major class
that implements the model by calculating the Jaccard
similarity [33] between the class name and model
name. The class with the highest similarity is selected
as the implementation class. We then analyze the
used ML/DL components by identifying the classes
that the implementation class depends on. If the
names of the identified classes contain known ML/DL
components (e.g., CNN, LSTM) in the KG, we think
the ML/DL components are used by the current
model.

4.5 Resulting KG
The resulting AI task-model KG includes 159,310 entities
and 628,045 relationships. The entities include 17,250 tasks,
25,404 papers, 25,718 models, 21,003 model implementations,
and 24,047 repositories. Among them, 1,017 tasks and 9,839
models are obtained from PapersWithCode; 16,233 tasks and
15,805 models are extracted from ML/DL papers; 2,419
model implementations and 827 repositories are obtained from
AwesomeLists. The relationships include 17,410 subclassOf
relationships between tasks, 44,438 accomplish relationships,
20,594 hasEvaluation relationships, 29,281 implement relation-
ships, 21,008 provide relationships, 60,040 basedOn relation-
ships, and 105,963 support relationships. The complete data of
the resulting KG is available in our replication package [27].

Figure 5 presents a part of the KG. It shows MatchSum,
a BERT-based model proposed in ACL 202012 for extractive
text summarization task. The KG also includes an imple-
mentation of the model. The implementation is based on
PyTorch 1.4.0, depends on Python library transformer 2.5.1,
and supports Python 3.7, GPU, and Linux.

5 KG-BASED TREND ANALYSIS

For application developers and related researchers, it is
difficult to have a comprehensive understanding of AI tasks,
ML/DL models, and their implementations, because relevant
information is scattered in different places. MLTaskKG links
AI tasks, ML/DL models, and their implementations in a
knowledge graph, thus can help to analyze the trends of AI
tasks and their implementations. This analysis is the most
direct application of our knowledge graph, and it can deepen
our understanding of the problem scenarios addressed in
this paper.

Design. With the continuous emergence of new applica-
tions, tasks, ML/DL models and model implementations, AI

12. https://aclanthology.org/2020.acl-main.552
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Fig. 5. An Example of AI Task-Model KG

Fig. 6. The Trend of Emerging Implementations of AI Tasks

Fig. 7. The Popularities of Repositories of Different Years for Specific AI
Tasks

is a fast-developing area. The innovation of AI is reflected
in both new AI tasks and new models and implementations
for existing AI tasks. Based on our AI task-model KG we can
analyze the trend of emerging implementations of AI tasks.
For an AI task, new ML/DL models or implementations
may constantly emerge. The corresponding repositories have
different popularities. For this purpose, we can analyze the
popularities of repositories of different years for specific AI
tasks.

Results. Figure 6 shows a heat map reflecting the trend
of emerging implementations of AI tasks. The analysis
considers the 618 second-level tasks (i.e., the direct children
of the first-level tasks such as CV and NLP) in the AI task
hierarchy of the KG. Each block in the heat map indicates the
number of new implementations for AI tasks proposed in
different years. For each AI task, we can obtain the time when
it first appears in our dataset from the publication time of the
first paper for it. For each implementation of an AI task, we
obtain the time of its emergence from the creation time of the
corresponding open-source repository. It can be seen that a
large part of the ML/DL model implementations are targeted
at some AI tasks that first appear during 2011-2014 (especially
2011-2012). This trend is consistent with the explosion of
deep learning during 2011-2012. A large number of papers
using deep learning to accomplish specific AI tasks were
published during that time. Many of the targeted AI tasks
are classic tasks that attract constant attention. The number
of emerging ML/DL model implementations keeps growing
and starts an explosive growth from 2018. It is interesting
to notice that most of the emerging implementations during
2018-2020 are targeted at those classic tasks that first appear
during 2011-2014 (especially 2011-2012). The results suggest,
to some extent, that classic tasks attract constant attention
with many new implementations, while emerging tasks have
much fewer implementations.

Figure 7 shows the popularity of repositories of different
years for four specific AI tasks respectively, i.e., image
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classification, pose estimation, sentiment analysis, and drug
discovery. Each point in the figure represents a repository
for the corresponding task and the horizontal axis and the
vertical axis represent the creation year and star number (in
log10 scale) of the repository respectively. The analysis of
these four AI tasks presents different patterns. For example,
image classification (the first task in Figure 7) is a classic AI
task which is very popular and attracts extensive attention.
It has many implementing repositories created in different
years and there are high-star repositories of different ages. It
can also be seen that, although more and more repositories
were created in the recent four years, the most popular
repositories were created in 2015. In contrast, drug discovery
(the fourth task in Figure 7) is a relatively new and less
popular task with much fewer implementing repositories.
Moreover, it lacks high-star repositories and there is no
significant increase over years.

Summary. Based on the AI task-model KG, ML-
TaskKG supports a variety of different kinds of trend analysis
about AI tasks and their implementations. The analysis can
help application developers and related researchers to have
an overview of the implementing repositories for different
AI tasks and the emergence of new ML/DL models and
implementations for specific AI tasks.

6 ML/DL LIBRARY RECOMMENDATION

MLTaskKG supports interactive ML/DL library recommen-
dation as shown in Figure 8.

For an AI task given by the user, MLTaskKG first retrieves
the tasks in the KG, finds the most relevant task, and
recommends the libraries that implement the task. We
calculate the similarity between the task given by the user
and the tasks collected in the KG based on the Word2Vec
model (see Section 4.2.3). We then choose the most similar
task in the KG as the matched task, identify the ML/DL
models accomplishing the task, and return all the libraries
implementing the models. To help users to enter a proper
query for the desired AI task, MLTaskKG implements sev-
eral query suggestion strategies, including task completion,
parent task and subtask recommendation, and relevant task
recommendation. For example, “text classification” will be
suggested for “text”; “multi-label text classification” will be
suggested for “text classification”; “document classification”
will be suggested for “documentation classification”.

The recommended libraries are ranked and listed with
various information from different sources (e.g., papers,
models, and repositories), e.g., repository name and link,
star/fork number, model name, citation, and performance
ranking. Based on the implementation knowledge of the
recommended libraries, MLTaskKG further supports the user
to filter the libraries from different dimensions, i.e., hard-
ware, operating system, programming language, ML/DL
framework, ML/DL component, and dataset. The options
for filtering are generated based on the current set of
recommended libraries. For example, only the programming
languages supported by the current recommended libraries
are provided as options of programming language.

7 EVALUATION

MLTaskKG links AI tasks, ML/DL models, and open-source
libraries by constructing a knowledge graph. The resulting
AI task-model KG can help to analyze the trends of AI tasks
and their implementations and recommended libraries for
specific AI tasks. To evaluate the effectiveness of MLTaskKG,
we conduct a series of experimental studies to answer the
following research questions.

RQ1: What is the intrinsic quality of the resulting AI
task-model KG?

RQ2: How effective is MLTaskKG in helping developers
find suitable libraries for specific AI tasks?

7.1 RQ1: Intrinsic Quality
We evaluate the intrinsic quality of the AI task-model KG
by assessing the correctness of the tuples in the KG. A tuple
can be a relationship between two entities (e.g., <MatchSum,
accomplish, text summarization>) or an attribute value of an
entity (e.g., <MatchSum, hasTrainedModel, true>).

7.1.1 Design
Similar to previous studies [35], [36], [37], we adopt a
sampling method [38] to ensure that ratios observed in
the sample generalize to the population within a certain
confidence interval at a certain confidence level. For a
confidence interval of 10 at a 95% confidence level, the
required sample size is 96. Thus, for each type of relationship
and attribute, we randomly sample 96 tuples from the KG.
As a result, we randomly sample 1,632 tuples for 17 types
of relationships and attributes. Note that we do not sample
tuples that are extracted from PapersWithCode data dump
files or GitHub repository metadata as they are intrinsically
correct.

We invite four MS students (not affiliated with this
work) familiar with ML/DL to annotate the sampled tuples
independently. The four students have taken at least two
courses on AI and have at least one year of AI development
experience. For each tuple they annotate it to be correct or not
based on the corresponding knowledge sources (e.g., ReadMe
files). If their annotations are different, a third student is
assigned to give an additional annotation to resolve the
conflict by a majority-win strategy.

7.1.2 Results
The Cohen’s Kappa agreement of the first two annotators is
0.742 and the squared Kappa is 0.551, indicating moderate
agreement. Disagreements usually occur in two situations,
1) when students lack the corresponding background knowl-
edge about the entities involved in the tuples (e.g., AI tasks,
ML/DL models), or 2) when the tuples are extracted from
very lengthy knowledge sources (e.g., papers, code, ReadMe
files) and students ignore key information.

The results for each type of relationship and attribute
are shown in Table 3. According to the annotations, 1,514
tuples are correct and 118 are not, making a correctness
of 92.8%. Among all relationship types and attributes, the
accuracy of the relationships “implement”, “accomplish”
and “subclassOf” is relatively low. We analyze the data and
find that most errors are rooted in task-model knowledge
extraction from ML/DL papers (see Section 4.2.2), i.e., the
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Fig. 8. User Interface of ML/DL Library Recommendation

TABLE 3
Accuracy of Relationships and Attributes

Type Accuracy Type Accuracy Type Accuracy
subclassOf 81.3% proposedIn 90.6% accomplish 82.3%
implement 78.1% provide 93.8% use 92.7%
hasLicense 100% basedOn 100% dependOn 87.5%
hasDataset 100% support 100% hasTrainedModel 94.8%

hasReleasePackage 96.0% hasCommand 91.7% hasTest 94.8%
hasDocument 100% hasExampleScript 90.6%

BERT-BiLSTM model identifies tasks and models incorrectly
from some papers. In future work, we will try to further
improve this by training more advanced models with more
training data. Moreover, we can train a tuple classification
model to identify and filter low-quality tuples from the KG.

7.1.3 Summary
The AI task-model KG is of high quality which is indicated
by the correctness of 92.8% for the sampled tuples.

7.2 RQ2: Recommendation Effectiveness
To evaluate the effectiveness of MLTaskKG, we conducted
a human study in which participants were asked to use
MLTaskKGto find suitable ML/DL libraries for given AI
tasks. To the best of our knowledge, there are currently no
tools specifically designed for task-oriented ML/DL library
recommendation. However, PapersWithCodecan help in this
regard as it organizes state-of-the-art models with imple-
mentations by task. Therefore, we chose PapersWithCodeas
our baseline for comparison. We did not choose to use
technical forums such as Stack Overflow or Medium.io as a
baseline because they contain a lot of noise, such as questions
unrelated to ML/DL, and have limited coverage for AI tasks
or ML/DL models. Similarly, we did not use GitHub as a
baseline because it lacks structured descriptions for AI tasks
or ML/DL models and includes a significant amount of noise,
such as ML/DL tutorials.

7.2.1 Design
We randomly select eight questions aimed at seeking for
ML/DL libraries from our empirical study data (see Sec-
tion 3.1) and adapt them into eight ML/DL library retrieval
tasks. The adaptation is focused on improving the expression,
e.g., adding explanations for abbreviations and technical
terms and changing the order of sentences. One of the tasks
is described as follows and the complete list of tasks is
available in our replication package [27].

I want to develop a deep learning application that can read
and understand news, such as reading comprehension on CNN
(Cable News Network), any good libraries you can recommend?
My framework version is Pytorch 1.7.

We invite 10 MS students to participate in the study. They
have some basic knowledge about ML/DL and experience
in AI application development, but are not AI researchers
or experts. Therefore, they can well represent the target
users of MLTaskKG, i.e., AI application developers. We
conduct a pre-study survey on their programming experience
and mastery of ML/DL knowledge and divide them into
two “equivalent” participant groups (PA and PB) based on
the survey. On the other hand, we randomly divide the
eight tasks into two task groups (TA and TB) as well. The
participants in PA complete TA with PapersWithCode and
TB with MLTaskKG. The participants in PB complete TB
with PapersWithCode and TA with MLTaskKG. For each
participant, the tasks are interleaved, one completed with
MLTaskKG and one with PapersWithCode.

We provide a pre-study tutorial to help the participants
to understand the requirements of the tasks. The tutorial
provides training on tools (MLTaskKG and PapersWithCode)
and the protocol to make the participants familiar with the
tools and process. For each task the participants need to find
and submit an ML/DL library (i.e., GitHub repository) that
meets the requirements of the task as the result. If they find
multiple libraries they need to choose the most suitable one
as the result. We record the libraries they submit and their
completion time for each task. Note that they can submit
nothing if they don’t find a suitable library in 10 minutes.

We aggregate all submitted results for the same task and
eliminate any duplicates. We then invite another four MS
students who are experts in AI application development to
assess the satisfaction of each submitted result by answering
the question “Does the library satisfy the requirements of
the task and is of high quality?” on a 4-points Likert scale (1-
disagree; 2-somewhat disagree; 3-somewhat agree; 4-agree).
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Fig. 9. Comparison of Completion Time between MLTaskKG and Paper-
sWithCode

We ask the four students to rate a submitted result as 4 only
if it meets the requirements well and is high-quality; 3 if
it satisfies the requirements but is not high-quality; 2 if it
doesn’t meet the requirements and is high-quality; 1 if it
doesn’t meet the requirements and is not high-quality. The
high satisfaction rating (3 or 4) for a library indicates that it
is a suitable choice for completing the task. Each of the four
students has taken at least two courses in AI and has at least
two years of AI development experience. To eliminate any
potential bias, we shuffle the results prior to assessment to
ensure that the annotators are unaware of which approach
was used to obtain each result.

7.2.2 Results

We obtain 76 results submitted by the participants and the
comparison of satisfaction assessment is presented in Table 4.
The four failures are all made when PapersWithCode is used.
For each failure the satisfaction assessment is recorded as
1. As a result, MLTaskKG received: agree (88), somewhat
agree (25), somewhat disagree (20), disagree (19), while
PapersWithCode received agree (7), somewhat agree (23),
somewhat disagree (73), disagree (41).

We further analyze the completion time of the results
that receive only positive feedback (agree or somewhat
agree) on satisfaction. Figure 9 shows the comparison be-
tween the participants using MLTaskKG and those using
PapersWithCode. The participants using MLTaskKG can find
more ML/DL libraries with high satisfaction (23 vs. 4) in
shorter time (173 seconds vs. 416 seconds on average). We use
Welch’s t-test [39] to verify the statistical significance of the
difference in time and satisfaction between MLTaskKG and
PapersWithCode. The results show that both the difference
in time and satisfaction are statistically significant (with
p << 0.05).

We conduct an interview with the participants to learn
their feedback on MLTaskKG and PapersWithCode. Inter-
view questions include: 1) Do you think the tool (ML-
TaskKG or PapersWithCode) is more useful/useless for AI
application development and why? 2) What do you like
or/dislike about the tool (MLTaskKG or PapersWithCode)
and why? 3) Do you have any suggestions for further
improvement of the tool? Most of them agree that ML-
TaskKG provides much better support for AI application

development. Some of them mention that PapersWithCode is
targeted at AI researchers with the objective of finding
papers and SOTA models for comparison. When they seek
ML/DL libraries as application developers, they focus more
on the matching of tasks and the availability of high-quality
implementations for SOTA models. For papers with code Pa-
persWithCode only provides the links to the corresponding
repositories. The participants often need to switch back and
forth between PapersWithCode and multiple repositories for
comparison. In contrast, MLTaskKG recommends matched
libraries together with important information like ML/DL
framework and programming language. Moreover, the fil-
tering mechanism provided by MLTaskKG can help them
quickly filter out unsuitable recommendations. The partici-
pants also give us some suggestions for further improvement,
for example providing sample code of implementing an AI
task with the recommended library.

7.2.3 Summary
Using MLTaskKG, the participants can find ML/DL libraries
with 68.4% higher satisfaction and using 47.6% shorter time
compared with those using PapersWithCode.

8 THREATS TO VALIDITY

Both the empirical study and the evaluation involve data
annotation, thus a common threat to the internal validity of
them is the subjective judgment of the annotators. To alleviate
the threat, we follow commonly used data analysis principles,
for example multiple annotators, conflict resolution, and
reporting agreement coefficients, where appropriate. Since
we make our data available for replication, the data can
be further evolved and corrected (if needed) by other
researchers. Another threat is that our data annotation has
been done by students, not professional AI application
developers. To alleviate this threat we reported their AI
learning and development experience. The invited students
should be qualified for our experiments.

Another potential threat to the validity of our KG is
related to its completeness. Although we relied on Paper-
sWithCode and AwesomeLists as the initial sources for
collecting tasks and models, we acknowledge that they only
cover a small subset of the available tasks and models. To
address this limitation, we further extracted more tasks and
models by analyzing a large number of AI papers that
were automatically crawled. While we have made efforts
to collect and curate as many papers as possible, our current
implementation of MLTaskKG only collects papers from a
limited number of AI conferences and journals, which may
cause us to miss tasks, models, and libraries from certain AI
fields. In addition, the evaluation of the KG only focuses on
the correctness of the existing relationships, but we cannot
guarantee that we have captured all possible relationships
or entities related to a task. Therefore, there may be gaps
in the knowledge graph that we have not yet discovered.
We acknowledge these limitations and believe that future
work could focus on improving the completeness of the
KG by expanding the sources of papers and incorporating
more expert knowledge to supplement our current approach.
Furthermore, while we have made efforts to optimize the
performance of each component during the implementation,
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TABLE 4
Comparison of Satisfaction Assessment between MLTaskKG and PapersWithCode

Approach #Agree #Somewhat Agree #Somewhat Disagree #Disagree
MLTaskKG 88 25 20 19

PapersWithCode 7 23 73 41

the absence of a thorough evaluation of each component
separately may pose a potential threat to the overall quality
of the KG. However, we believe that the overall performance
of the KG is a good indicator of the effectiveness of the
intermediate components. Future work could focus on
evaluating the performance of each individual component
to mitigate this potential threat and further improve the
accuracy and efficiency of the KG construction process.

A common threat to the external validity is the limited
number of subjects (e.g., questions, tasks, and participants)
considered in the empirical study and the evaluation. We
only analyze 283 ML/DL library seeking questions in the
empirical study and conduct eight library seeking tasks
with 10 participants in the evaluation of recommendation
effectiveness. Thus the findings of the empirical study and
evaluation may not be generalized to broader AI application
development scenarios in practice. Our current implementa-
tion of MLTaskKG only collects the papers of a part of the
AI conferences, thus may miss tasks, models, and libraries of
some AI fields. Extending our implementation and analysis
to more AI fields and tasks may lead to the identification of
additional factors, but will not invalidate the results we have
obtained.

9 RELATED WORK

With the rapid development of AI technologies and appli-
cations, more and more researchers focus on software engi-
neering issues of AI application development [40], including
software architecture [41], implementation [42], [43], [44],
debugging/testing [45], [46], [47], [48], [49], deployment [43],
[50], [51], artifact traceability [52], and technical debt [53].
Some researches are focused on the usage of ML/DL cloud
APIs [54], [55] and backward compatibility issues [56]. Zhang
et al. [42] conduct an empirical study on DL-related questions
on Stack Overflow and find that program crashes, model
deployment, and implementation are the top three topics of
the questions. Different from their work, our work is focused
on a specific type of questions, i.e., ML/DL library seeking,
and the corresponding support of recommendation.

Knowledge graphs as a representation of structured
human knowledge have drawn great attention from both
the academia and the industry, which have been applied
in many fields such as medicine and finance [57], [58].
Some researchers in the field of software engineering have
constructed different types of knowledge graphs for different
purposes, such as knowledge graphs for bugs [59], domain
terminology [36], API caveats [35], API concept and descrip-
tive knowledge [60], API comparison [37], and software
development tasks [61]. Compared with these knowledge
graphs, AI task-model KG is a new type of knowledge graphs
focusing on the relationships between AI tasks, ML/DL
models, and implementation libraries.

In recent years, there have been approaches proposed for
API library recommendation by mining app-library usage
patterns [62], [63], [64], [65], [66], applying collaborative fil-
tering [67], [68], [69], and training graph neural network [70].
Different from these approaches, MLTaskKG focuses on a
specific type of libraries (i.e., ML/DL libraries) and makes
a recommendation based on the links between AI tasks,
ML/DL models, and the libraries. Shao et al. [71] propose
paper2repo, an approach that recommends relevant GitHub
repositories for a given paper. The approach matches reposi-
tories with papers based on joint embeddings of papers and
repositories. It does not consider the relationships between AI
tasks, ML/DL models, and repositories and cannot support
the recommendation of repositories for specific AI tasks. Cao
et al. [72] present a knowledge graph based approach that
can recommend ML models for a given ML dataset. The
KG constructed in [72] is a small subset of ours and lacks
knowledge specifically captured for developers. Their KG is
constructed by parsing PapersWithCode data and includes
only knowledge about papers, models, and datasets. Our
KG includes knowledge extracted from multiple sources (e.g.,
PapersWithCode, GitHub repositories, Awesome Lists) and
application development knowledge about ML/DL libraries
(e.g., environmental dependencies and supporting resources).
Their approach retrieves relevant ML/DL models for a given
dataset in their KG, while MLTaskKG supports task-oriented
ML/DL library recommendation with multi-dimensional
comparison.

With the increasing number of scientific publications,
including those in the AI domain, many researchers have
turned their attention to constructing academic KGs [73], [74],
[75], [76]. For example, Färber [74] proposed the Microsoft
Academic Knowledge Graph (MAKG), which contains over
eight billion triples of information about scientific publi-
cations and related entities, such as authors, institutions,
journals, and fields of study. However, our KG differs from
academic KGs in that it focuses specifically on the AI field
and includes information not only about papers but also
about ML/DL models and implementing libraries. While
some researchers have used academic KGs to design different
approaches for recommending papers [77], [78], [79], our
work specifically focuses on recommending ML/DL libraries
rather than papers.

10 CONCLUSIONS AND FUTURE WORK

Although many ML/DL models and implementations are
available, it is not easy for application developers to find
ML/DL libraries that are suitable for their AI tasks. Aiming at
the problem we conduct an empirical study to understand the
requirements of application developers for ML/DL libraries
and propose a task-oriented ML/DL library recommenda-
tion approach, called MLTaskKG. MLTaskKG constructs a
knowledge graph that captures AI tasks, ML/DL models,
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model implementations, and their relationships. Based on the
knowledge graph, MLTaskKG recommends ML/DL libraries
for developers by matching their requirements on tasks,
model characteristics, and implementation information. Our
evaluation confirms the quality of the resulting knowledge
graph and the effectiveness of MLTaskKG for task-oriented
trend analysis and recommendation of ML/DL libraries. Our
future work will be focused on integrating more knowledge
and resources about AI tasks and ML/DL libraries, including
background knowledge of AI tasks, and ML/DL library
tutorials, sample code, and problem discussions.

11 DATA AVAILABILITY

All the data and results of the work can be found in our
replication package [27].
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