
XCoS: Explainable Code Search based onuery Scoping and

Knowledge Graph

CHONG WANG∗, Fudan University, China

XIN PENG∗, Fudan University, China

ZHENCHANG XING, CSIRO’s Data61 & Australian National University, Australia

YUE ZHANG∗, Fudan University, China

MINGWEI LIU∗, Fudan University, China

RONG LUO∗, Fudan University, China

XIUJIE MENG∗, Fudan University, China

When searching code developers may express additional constraints (e.g., functional constraints and nonfunctional constraints)

on the implementations of desired functionalities in the queries. Existing code search tools treat the queries as a whole and

ignore the diferent implications of diferent parts of the queries. Moreover, these tools usually return a ranked list of candidate

code snippets without any explanations. Therefore, the developers often ind it hard to choose the desired results and build

conidence on them. In this paper, we conduct a developer survey to better understand and address these issues and induct

some insights from the survey results. Based on the insights, we propose XCoS, an explainable code search approach based

on query scoping and knowledge graph. XCoS extracts a background knowledge graph from general knowledge bases like

Wikidata and Wikipedia. Given a code search query, XCoS identiies diferent parts (i.e., functionalities, functional constraints,

nonfunctional constraints) from it and use the expressions of functionalities and functional constraints to search the codebase.

It then links both the query and the candidate code snippets to the concepts in the background knowledge graph and generates

explanations based on the association paths between these two parts of concepts together with relevant descriptions. XCoS

uses an interactive user interface that allows the user to better understand the associations between candidate code snippets

and the query from diferent aspects and choose the desired results. Our evaluation shows that the quality of the extracted

background knowledge and the concept linkings in codebase is generally high. Furthermore, the generated explanations

are considered complete, concise, and readable and the approach can help developers ind the desired code snippets more

accurately and conidently.

CCS Concepts: · Software and its engineering→ Software development techniques.

Additional Key Words and Phrases: code search, explainability, knowledge, concept

1 INTRODUCTION

Developers often accomplish their development tasks by searching code using queries in the form of natural
language [57, 71]. Many code search methods have been proposed to help developers, which can be divided

∗C. Wang, X. Peng, M. Liu, Y. Zhang, R. Luo and X. Meng are with the School of Computer Science and Shanghai Key Laboratory of Data

Science, Fudan University, China.

Authors’ addresses: ChongWang, Fudan University, China; Xin Peng, Fudan University, China; Zhenchang Xing, CSIRO’s Data61 & Australian

National University, Australia; Yue Zhang, Fudan University, China; Mingwei Liu, Fudan University, China; Rong Luo, Fudan University,

China; Xiujie Meng, Fudan University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/4-ART $15.00

https://doi.org/10.1145/3593800

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3593800
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593800&domain=pdf&date_stamp=2023-04-22

2 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

into two categories: methods based on information retrieval (IR) and methods based on deep learning (DL).
The IR-based methods [8, 15, 51] treat code as text and retrieve the code with the highest lexical similarities to
the query by combining the bag-of-words model with statistical features such as TF-IDF [70] and BM25 [67].
IR-based methods are very fast and can practically support code search on large-scale codebases. The DL-based
methods [22, 25, 26, 38, 47, 69, 78] rely on diferent DLmodels to learn representations of queries and code snippets
with semantics and measure the relevance based on the semantic representations. There are also researches on
query expansion [28, 29, 44, 50, 52, 62]. These methods improve the search accuracy by expanding the words in
the query with dictionaries or crowd-sourced resources, so as to bridge the lexical gap between the query and the
code.
However, there are two major issues that have not been addressed or resolved. First, when searching code

developers may express additional constraints (e.g., functional constraints and nonfunctional constraints) on the
implementations of desired functionalities in the queries. Existing code search methods treat the queries as a
whole and ignore the diferent implications of diferent parts of the queries. This may blur the focus of the search
for some search methods (especially IR-based methods), resulting in noisy code snippets that are not relevant
to the desired functionality. Second, existing methods usually return a ranked list of candidate code snippets
without any explanations. It is time-consuming and labor-intensive for developers to understand search results
and they often ind it hard to choose the desired results [48]. Moreover, due to the lack of background knowledge
and relevant explanations, developers may lack conidence in the code they choose, and even choose problematic
(e.g., vulnerable) code without realizing it.

To better understand and address the issues, we conduct a developer survey with 101 developers to investigate
practitioners’ practices and perspectives on code search, covering the aspects of professional background, search
requirements, code choosing, code understanding, and knowledge needs. From the survey results, we obtain some
insights, such as: I1: reading and understanding code is very important for choosing desired code snippets; I2:
code search services should not be afected by the expressed nonfunctional concerns; I3: background knowledge
should be provided for developers to make them understand code snippets better and more conidently; I4: code
snippets should be iltered conveniently rather than just being browsed and checked linearly.

Our key ideas to address two issues are two folds.We can solve the irst issue by query scoping, a commonly used
technique in automatic question answering and recommendation systems [66]. It includes query segmentation and
query tagging, which are responsible for dividing the query into diferent parts and determining the implication
scope of each part respectively. Through query scoping, we can determine which part of the query should be
used to directly search the code, and which part should be used to help ilter the results. For the second issue,
the key idea is to bridge the knowledge gap between the code and the query using a background knowledge
graph extracted from general knowledge bases. We observe that background knowledge related to software
development is contained in general knowledge bases like Wikidata [12] and Wikipedia [13], which can help
developers understand the conceptual associations between the code and the query, and provide explainability
for the searching results.

Based on these two ideas, in this paper we propose XCoS, an eXplainableCode Search approach based on query
scoping and knowledge graph. XCoS includes an oline phase for background knowledge graph construction and
an online phase for code search. In the oline phase, XCoS irst builds the skeleton of the background knowledge
graph with software development related concepts and basic relationships identiied from general knowledge
bases and then enriches it with extended knowledge extracted from related Wikipedia articles. In the online phase,
XCoS irst identiies diferent parts (i.e., functionalities, functional constraints, nonfunctional constraints) from the
given search query and uses the expressions of functionalities and functional constraints to search the codebase
with existing search tools (e.g., one built based on Elasticsearch [4]). After that, XCoS links both the query and
the candidate code snippets to the concepts in the background knowledge graph and generates explanations
based on the association paths between these two parts of concepts together with relevant descriptions.

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 3

XCoS uses an interactive user interface (UI) that allows the user to better understand the associations between
candidate code snippets and the query from diferent aspects. These aspects include: query parts and their
corresponding scopes, explanatory information (i.e., conceptual association paths, related descriptions and
additional suggestions) organized in the form of trees, and concept-annotated code snippets. Based on this
interactive interface, XCoS helps the user choose desired results better.

To evaluate the quality and usefulness of XCoS, we conduct a series of experiments with the Java code snippets
in CodeSearchNet dataset [30]. An empirical evaluation of the intrinsic quality reveals that XCoS constructs high
quality of background knowledge graph and concept linkings in the codebase. The efectiveness assessment for
generating explanations shows that XCoS can produce complete, concise, and readable explanatory information.
More so, an empirical study with 14 participants reveals that XCoS can signiicantly improve the accuracy by
40.5% and increase conidence in choice when used to support participants in code search tasks.

2 MOTIVATING EXAMPLE

As reported in previous studies [42, 76] on Q&A forums such as Stack Overlow (SO), when accomplishing
development tasks developers often have funcational requirements (e.g., speciic functionalities) and nonfunctional
concerns (e.g., performance and security). The funcational requirements and nonfunctional concerns can be
relected in the titles, bodies, answers, and discussion threads of questions. In the similar vein, developers may
also have both functional requirements and nonfunctional concerns when searching code and express them into
search queries as constraints. Below, we demonstrate the impact of constraints on search and the importance of
explainability through a concrete example.

Hash calculation is a commonly used functionality in development tasks and Fig. 1 shows a question [11] on
Stack Overlow about it. Besides the desired basic functionality calculate hash, the questioner has an additional
funcational constraint (i.e., to verify ile integrity). Moreover, according to the statements in the question body
(as shown in the red box), the questioner also concerns about the security aspect of diferent hash functions. It
means that the questioner also has a demand for some nonfunctional constraints, e.g., not vulnerable to attacks,
attached to the basic functionality. For better exploration, we take all the Java code snippets (about 500K Java
methods) in the CodeSearchNet [30] dataset as the codebase, and use Elasticsearch to build a code search service.
For the above example, when only the basic functionality (i.e., calculate hash) is used to search, the irst few

candidate code snippets returned have nothing to do with calculating ile hash until the 8th and 9th ones, which
are computing the hash of ile by using a hash tree and SHA-1, respectively. When searching by combining the
functionality and functional constraint like calculate hash to verify ile integrity, the irst candidate code snippet
returned is about downloading a ile, and part of this code is using MD5 to verify the integrity of the downloaded
ile. Compared to searching with only functionality, it can be seen that adding functional constraints to basic
functionality can help clarify the intent of the search and reduce the search scope. On the other hand, if we
attach the nonfunctional constraint to the functionality (e.g., calculate hash not vulnerable to attacks) to search
code, of the top 10 candidate code snippets, only the 8th one is related to hash, and the rest are all related to
vulnerabilities or attacks. It means that adding nonfunctional constraints brings noise to the search. To this end,
given a search query, we need to analyze the query and select appropriate parts of it to search code.
Even if we can analyze the query well to make the search results more relevant to the query, developers

may still ind it diicult to pick the desired code snippet. For the above example, assume that calculate hash
to verify ile integrity is used for searching. Although the irst candidate code snippet contains code for using
MD5 to verify a ile’s integrity, developers still need to read and understand this code, and combine their own
background knowledge about MD5 to determine whether the code snippet meets their needs. For example, from
the description on Wikipedia shown in Fig. 2, we know that the MD5 hash algorithm can be used to verify data
integrity, which means that the code snippet can satisfy the functional constraint of verifying ile integrity. But

ACM Trans. Softw. Eng. Methodol.

4 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

Fig. 1. A SOuestion about Calculating Hash

Fig. 2. Descriptions in the Wikipedia Article of MD5

the description also mentions that MD5 is extensively vulnerable, which means that this code may not satisfy
the security concerns of the developers. If the developers themselves do not know these relevant background
knowledge, the result selection process may require consulting external materials, which is very time-consuming
and labor-intensive. In some cases, e.g., some developers are unaware of the security issues of the hash algorithm,
they may even choose problematic code snippets that lead to some bad consequences (e.g., introducing potential
vulnerabilities). At the same time, due to the above reasons, developers usually lack conidence in the selected
code snippets when they do not have relevant background knowledge. The main cause for the above problems is
that existing code search tools lack the associations between search results and query parts and the explainability
of search results.

3 DEVELOPER SURVEY

We further design a developer survey to investigate practitioners’ practices and perspectives on code search
requirements and code understanding.

To ensure the quality and participation rate of the survey, we invite active developers on GitHub to participant
in our online survey. We irst obtain the list of active GitHub developers using a commit statistics tool1 and
then get the corresponding email addresses of these developers via GitHub APIs2. We then email each of these
developers to briely introduce our research topic on code search and kindly invite them to participate in our online
questionnaire survey. Finally, 4,208 emails are sent in total. As shown in Table 1, the survey include 12 questions

1https://github.com/lauripiispanen/most-active-github-users-counter, the statistics data was generated at Oct. 30, 2022
2https://api.github.com/

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 5

Table 1. Surveyuestions

Q1 How many years of development experience do you have?

Q2 How often do you search code snippets using natural language queries to accomplish your development tasks?

Q3 What methods or tools do you use to search code snippets?

Q4 Besides the basic functionality requirements, what other nonfunctional concerns do you have about the code snippets?

Q5 Do you want to express these concerns in queries when searching code snippets? Why?

Q6 How do you choose the desired code snippets that meet your requirements or concerns in the search results?

Q7 Is it eicient to linearly browse and check the code snippets in the list of search results?

Q8 How much time will be spent understanding the search results during the choosing process?

Q9 What kinds of information/knowledge are necessary to understand the search results?

Q10 How do you consult and summarize the necessary information/knowledge?

Q11 How do the information/knowledge and the understanding of search results afect your conidence in the code snippets you choose?

Q12 Would it be helpful to develop a tool that can provide related information/knowledge for understanding the search results?

that cover the aspects of professional background, search requirements, code choosing, code understanding, and
knowledge needs. It takes participants about 5-10 minutes to complete. For the open questions, three authors
categorize the answers separately and a group discussion is conducted to reach consensus. In seven days, there
are 101 developers coming from 67 countries/regions responsing to our invitation emails and inishing the
questionnaire (i.e., a participation rate of 2.4%).

Professional Background (Q1śQ3). Q1: Of all the 101 participants, 39.6% have more than 10 years of
development experience, 14.8% have 5 to 10 years, and 21.8% have 3 to 5 years, and 23.8% have less than 3 years.
Q2: 45.5% of the participants always or often search code to accomplish development tasks, 8.9% as often as not
search code, 22.8% sometimes search code, and 21.8% rarely search code. Q3: Of the participants, 96 give their
common search services, including Google (84.4%), Stack Overlow (32.3%), GitHub (11.5%), DuckDuckGo (5.2%),
etc.

Search Requirements (Q4śQ5). Q4: There are 65 participants listing their nonfunctional concerns when
searching code, mainly including performance/eiciency (40.0%), security/vulnerability (18.5%), robustness/relia-
bility/stability (15.4%), compatibility (e.g., platforms, languages, and dependencies) (15.4%), understandability
(13.8%), style/cleanliness/readability (10.8%), copyright/license (8.8%), recentness/timeliness (7.7%), idiomatic-
ness/patterns (7.7%), etc. Q5: Of the 65 participants, 35.4% respond that they want to express their nonfunctional
concerns in search queries, while 49.2% respond that they do not. For the participants wanting to express the
nonfunctional concerns, the main reason is that they expect to narrow down the search scope and get better
search results. For the participants not wanting to, there are three main reasons: search services cannot give
the better (even worse) results when they add the nonfunctional concerns (35.0%); they want to manually check
whether the searched code meets the nonfunctional concerns (30.0%); they do not know how to express the
nonfunctional concerns (15.0%).

Choosing of Desired Code Snippets (Q6śQ7). Q6: There are 77 participants giving that how they choose
the desired code snippets that meet their requirements. The most commonly used ways include reading code and
comments/documentation (48.1%), testing and trying the code (27.3%), checking some extra metrics (e.g., website
authority, GitHub stars, open/close issues, Stack Overlow upvotes, and lisences) (24.7%), and comparing diferent
solutions (3.9%), etc. Q7: Of the 77 participants, 50.6% think that it is eicient to linearly (i.e., one-by-one) browse
and check the code snippets, and the rest 49.4% think the opposite.

Time of Code Understaning (Q8). Of the participants, 28.3% spend most of the time on code understaning
in the code choosing process, 38.0% spend about a half of the time, and 33.7% spend little time.

ACM Trans. Softw. Eng. Methodol.

6 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

Information/Knowledge Needs for Code Understaning (Q9śQ10). Q9: There are 78 participants listing
the information/knowledge they think necessary to understand code snippets, including basic technical back-
ground knowledge (e.g., the terms/concepts used in code and the understanding of security and performance)
(42.3%), language/library speciic knowledge (e.g., language syntax and library APIs) (33.3%), explanations of the
code (e.g., brief descriptions and related documentation) (11.5%), experience (e.g., reading-comprehension and
source criticism skills) (7.7%), etc. Q10: Of the 78 participants, 70 respond the two common ways they consult and
summarize the necessary information/knowledge, i.e., searching online resources (e.g., Google, Documentation,
Wikipedia, Forums, and Blogs) (71.4%) and asking other developers for help (10.0%).

Impact of Information/Knowledge (Q11śQ12).Q11: Of the participants, 68.1% think that the information/-
knowledge makes them more conident on code understaning, 22.9% think no efect, and 8.5% think less conident.
Q12: 74.5% of the participants think it is helpful to develop a tool to provide related information/knowledge for
understanding code snippets, and the rest 25.5% think the opposite.

Insights. Based on the survey results, we obtain the following insights. I0: In practice, developer still use
information retrieval based code search services (e.g., GitHub Search) to search code, instead of deep learning
based methods (e.g., DeepCS [25]). I1: Reading and understanding code occupies a very important position
in the process of choosing desired code snippets and takes a lot of time, tools are needed to help developers
understand the code snippets in search results. I2: Such tools should allow developers to express their functional
requirements and nonfunctional concerns simultaneously, and the code search services should not be afected
by the nonfunctional concerns. I3: Such tools should provide necessary information/knowledge for developers
which can make them understand code snippets better and more conidently, and background knowledge is the
most important kind of the information/knowledge. I4: Developers should be able to conveniently ilter code
snippets with such tools, rather than just browsing and checking the code snippets linearly in the order returned
by the search services.

4 APPROACH

Based on the insights I1, I2, and I3, we propose an explainable code search approach named XCoS based on
query scoping and knowledge graph. With query scoping, XCoS solves the problem of a query having diferent
implication parts. By extracting the background knowledge graph from the general knowledge bases and using
the knowledge graph to establish the associations between the search results and the query, XCoS can increase
the explainability of existing code search methods and help developers choose the desired code snippets better
and more conidently. In this section, we irst present an overview of XCoS, and then describe each step of it in
detail.

4.1 Overview

As shown in Fig. 3, XCoS includes an oline phase for background knowledge graph construction and an online
phase for code search.
The oline phase extracts software development related background knowledge from Wikidata [12] and

Wikipedia [13]. Wikidata is a free and open knowledge base for general knowledge and includes many software
development related concepts such as łMD5ž, łJSONž, łComputer networkž [46]. Wikipedia is a free online
encyclopedia which is closely associated with Wikidata. For many concepts in Wikidata we can ind articles that
describe them in detail in Wikipedia. The background knowledge extraction includes two steps, i.e., skeleton
knowledge extraction and extended knowledge extraction. In the irst step, XCoS extracts software development
related concepts together with their basic relationships and deinitions from Wikidata and Wikipedia. These
concepts and relationships constitute the skeleton of the background knowledge graph. In the second step, XCoS
extracts additional descriptions and relationships for the concepts obtained in the irst step by analyzing the

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 7

Skeleton Knowledge

Extraction

Background

Knowledge Graph

Extended Knowledge

Extraction

Explanation

Generation

Query Scoping

and Matching

Online Code Search

Candidate Code Snippets

Background Knowledge Graph Construction

Concepts,

Skeleton Relations

Extended Relations,

Descriptions

Explainable Code

Search Results

Search Query

Code Search

Service

Concepts

Fig. 3. An Overview of XCoS

Fig. 4. Background Knowledge Extracted for łMD5ž

corresponding Wikipedia articles. Fig. 4 shows a part of the extracted background knowledge for łMD5ž. Solid
line ellipses and arrows represent skeleton knowledge extracted in the irst step, including: related concepts and
relationships deined inWikidata, e.g., łMD5ž, łData Integrityž, łChecksumž, (łMD5ž, łinstance ofž, łcryptographic
hash functionž), (łMD5ž, łhas aliasž, łMessage Digest Algorithm 5ž); a concept deinition given by Wikipedia, e.g.,
łThe MD5 message-digest algorithm is a cryptographically broken but still widely used hash function producing
a 128-bit hash valuež. Dashed ellipses and arrows represent extended knowledge extracted in the second step,
including: description sentences extracted from Wikipedia articles, e.g., łMD5 has been found to sufer from
extensive vulnerabilitiesž; additional relationships extracted from Wikipedia articles, e.g., (łMD5ž, łto verifyž,
łData Integrityž).

The online phase produces explainable code search results for a code search query based on the background
knowledge graph. It includes two steps, i.e., query scoping and matching, explanation generation. In the irst
step, XCoS extracts diferent parts (i.e., functionalities, functional constraints, nonfunctional constraints) from
the search query and uses an existing code search service (e.g., one built on Elasticsearch [4] or code search
approaches like DeepCS [25]) to obtain a set of candidate code snippets based on the functionalities and functional
constraints. In the second step, XCoS links both the query and the candidate code snippets to the concepts in
the background knowledge graph and generates explanations based on the association paths between these two
parts of concepts together with relevant descriptions.

4.2 Skeleton Knowledge Extraction

The key for skeleton knowledge extraction is the identiication of software development related concepts from
Wikidata.

ACM Trans. Softw. Eng. Methodol.

8 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

XCoS extracts all Wikidata concepts from the dump of Wikidata [2] and the corresponding Wikipedia articles
from the dump of Wikipedia [3]. It associates Wikidata concepts and Wikipedia articles based on the Wikipedia
hyperlinks of the concepts, and then ilters out the concepts that have no corresponding Wikipedia articles. For
each remaining concept, XCoS takes the title and the irst sentence of the corresponding Wikipedia article as its
name and deinition respectively. In this way, we obtain 5,420,321 Wikidata concepts that have the corresponding
name and deinition.
To identify the software development related concepts from all the Wikidata concepts, XCoS then trains a

classiier based on the concept deinitions using BERT [18], a pre-trained text representation model that can
achieve very high accuracy in text classiication tasks. To avoid manual annotation, we design a method to
automatically construct the training data based on the associations between Wikidata concepts and SO tags.
There are 3,181 Wikidata concepts (e.g., RGB color model3) having corresponding SO tags (e.g., rgb4) which
can be obtained from their łStack Exchange tagž attributes. We take all these concepts as positive samples and
randomly select twice the number of positive samples from remaining Wikidata concepts as negative samples,
resulting in a relatively class-balanced dataset. Class imbalance of training data is a serious problem for learning
based classiication algorithms, which will decrease the efectiveness of the trained classiier [43]. Artiicially
data balancing is a commonly used method to address the problem. We divide the dataset into training set and
validation set by 9:1.

Based on the trained classiier, we identify software development related Wikidata concepts. For identiied
concepts, we obtain their aliases and relationships between them from Wikidata. After randomly sampling and
manually validating, the relationships are conirmed high-quality. This is thanks to the fact that Wikidata is a
reliable crowdsourced knowledge graph and only the relationships between two identiied concepts are fetched.
These concepts and relationships together with the names and deinitions of the concepts constitute the skeleton
knowledge of the background knowledge graph. For the example shown in Fig. 4, all the solid line concepts,
deinitions, and relationships are extracted in this step.

4.3 Extended Knowledge Extraction

For a software development related concept extracted from Wikidata, Wikipedia articles often provide various
descriptions about it. These descriptions may provide useful knowledge explaining the relationships between
queries and desired code snippets. XCoS extracts these descriptions and the concept relationships in them
using the following process. First, it extracts and normalizes description sentences from Wikipedia articles.
Second, it extracts open relationships from the description sentences. Third, it identiies candidate mentions
of software development related concepts in the description sentences. Fourth, it links the identiied mentions
to the corresponding software development related concepts. Fifth, it creates additional relationships based on
concept linking results.

4.3.1 Description Sentence Extraction and Normalization. For each concept, we obtain the irst paragraph of the
corresponding Wikipedia article for further analysis. We use a coreference resolution tool (e.g., neuralcoref [6] in
our implementation) to resolve the references of pronouns in the paragraph. As the coreference resolution tool
does not work well on sentences starting with łthis/thež followed by nouns (e.g., łthis algorithmž), we further use
some heuristic rules to handle such cases. We irst use a natural language processing (NLP) tool (e.g., spaCy [9] in
our implementation) to segment the paragraph into sentences. Then for each sentence starting with łthis/thež
followed by a noun, we determine whether the noun is a suix of the article title, and if so replace łthis/thež and
the noun with the title. After coreference resolution, we identify all the hyperlinks that point to other Wikipedia
articles in the sentences and replace the anchor text of them with the titles of the target articles. Through the

3https://www.wikidata.org/wiki/Q166194
4https://stackoverlow.com/tags/rgb

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 9

above process, we can obtain a set of normalized description sentences for each concept. For example, for the
concept łMD5ž a description sentence łMD5 can still be used as a checksum to verify data integrityž can be
obtained from the original sentence łIt can still be used as a checksum to verify data integrityž.

4.3.2 Open Relationship Extraction. To facilitate the association analysis between search queries and code
snippets, we further extract structured concept relationships from the description sentences. We use an open
information extraction tool (e.g., OpenIE6 [35] in our implementation) to extract triples of concept relationships
from the sentences. For example, two concept relationship triples (łMD5ž, łused asž, łchecksumž) and (łMD5ž, łto
verifyž, łdata integrityž) can be extracted from the description łMD5 can still be used as a checksum to verify
data integrityž. Note that the conceptual expressions in these triples such as łchecksumž and łdata integrityž are
still textual expressions that are not linked to the corresponding concepts at this time. There is no standard list
of relationships since the relationships built by open information extraction are in open domain (usually the
predicates in description sentences).

4.3.3 Candidate Concept Mention Identification. To obtain a highly structured background knowledge graph,
we need to further link the extracted description sentences and open relationships to the related concepts. To
this end, we need to irst identify candidate concept mentions in the description sentences by analyzing noun
phrases. Given a concept description, we use an NLP tool (e.g., spaCy in our implementation) to identify the noun
phrases in it. For each identiied noun phrase, we remove stop words at the beginning and end of it, and then use
all its possible sub-phrases (including the phrase itself) to match possible concepts. If a sub-phrase is a part of the
names or aliases of some concepts, the sub-phrase is treated as a candidate concept mention and all the matching
concepts are treated as candidate concepts for the mention. To ensure the quality of candidate mentions and
concepts, following rules are applied.

1) Longer Concept Mentions Preferred. If a noun phrase contains multiple overlapping sub-phrases that
can be treated as candidate mentions, we will only consider the longest sub-phrase as a candidate mention.

2) Concepts Referred to by Hyperlinks Preferred. Some concepts are referred to by hyperlinks in the
current Wikipedia article. If a sub-phrase matches such a concept, we will consider the concept as the only
candidate concept for the mention. For example, if łbuferž appears in a description and there is a hyperlink to
łData Buferž in the current article but no hyperlink to łOptical Buferž, łData Buferž will be considered as the
only candidate concept for the mention łbuferž.

3) Single-Word Sub-Phrase Specially Considered. A candidate mention that contains only one word may
be just a common word. To alleviate the ambiguity brought by common words, we treat the corresponding
common word as a special candidate concept besides other candidate concepts. For example, for the candidate
mention łbuferž we consider the common word łbuferž as a special candidate concept besides łData Buferž.

4.3.4 Concept Linking. Given a set of candidate mentions in a description sentence, we link each of them to
one of its candidate concepts or none (i.e., no relevant concept). The concept linking here can be treated as an
optimization problem with the following three objectives: maximize the lexical similarity between the mentions
and linked concepts; maximize the semantic similarity between the context of mentions and linked concepts; and
maximize the conceptual coherence of the linked concepts of all mentions.
The lexical similarity between a mentionm and a candidate concept c can be calculated using a smoothed

Jaccard coeicient as Eq. 1 (Eq. is short for Equation), wherewb (p) is the bag of lemmatized words (excluding
stop words) in a given phrase p and names (c) returns the name and aliases of c . We consider the maximum lexical
similarity between the mention and the concept names/aliases and use the square root to smooth the origin
Jaccard coeicient.

lexS (m, c) = max
nc ∈names (c)

√

|wb (m) ∩wb (nc) |

|wb (m) ∪wb (nc) |
(1)

ACM Trans. Softw. Eng. Methodol.

10 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

The semantic similarity between the context of the mentions ctx (i.e., the description sentence) and a candidate
concept c can be measured by the cosine similarity between their text embeddings as Eq. 2. In Eq. 2, de f (c) is
the deinition of c and the function embs (s) returns the sentence embedding of a sentence s by averaging the
embeddings of all the words in wb (s). We use a pre-trained Wikipedia2Vec model [14] to generate the word
embeddings.

ctxS (ctx , c) = cosine (embs (de f (c)), embs (ctx)) (2)

The conceptual coherence of two candidate concepts c1 and c2 can be measured by the cosine similarity of their
embeddings as Eq. 3. Note that besides concepts there may be a common word in the set of candidate concepts
of a mention. Therefore, we need an embedding model to map both concepts and words into the same vector
space when calculating the conceptual coherence. We use Wikipedia2Vec model [14] as the model, as it can
simultaneously guarantee that concepts and words with similar meanings are close in the vector space.

coh(c1, c2) = cosine (embw (c1), embw (c2)) (3)

Given a set of candidate mentions M in a description sentence, we need to ind a set of concepts C where
each mentionmi inM has a linked concept ci from its candidate concepts. We adopt the widely used pairwise
strategy in entity linking literatures [36] to deine the itness function of concept linking as Eq. 4, which combines
the itness of the linked concepts for all pairs of diferent mentions (mi ,mj) as deined in Eq. 5. For a pair of
mention (mi ,mj) and the corresponding pair of linked concepts (ci , c j), Eq. 5 combines the similarities between
the concepts and the mentions with the context of the mentions and the conceptual coherence of the concepts.

f itness (M,C, ctx) =
∑

mi ,mj ∈M (i,j)

ci ,cj ∈C

pairFit (mi ,mj , ci , c j , ctx) (4)

pairFit (mi ,mj , ci , c j , ctx) = lexS (mi , ci) + lexS (mj , c j)

+ ctxS (ctx , ci) + ctxS (ctx , c j)

+ coh(ci , c j) + coh(c j , ci)

(5)

To optimize the itness function deined in Eq. 4, we need to enumerate all possible groups of candidate concepts
and ind a best group which can maximize the itness. This problem is NP-hard, so we choose to adopt a strategy
that greedily links the mentions to the corresponding concepts in a pairwise way: 1) choose a pair of mentions
(mi ,mj) with at least one of them unlinked and a pair of concepts (ci , c j) from their candidate concepts and if
mi ormj is linked only consider the linked concept for ci or c j ; 2) consider all combinations meeting the above
conditions and select a combination (mi ,mj , ci , c j) with the highest pairwise itness as deined by Eq. 5, linkmi

andmj to ci and c j respectively if they are not linked yet; 3) repeat step 1 and 2 until all mentions are linked or
the highest pairwise itness is lower than a threshold (0.8 in our implementation). When the process ends, all
candidate mentions that are not linked or linked to a common word are omitted.

4.3.5 Additional Relationship Creation. Based on the results of concept linking, we create the following three
kinds of relationships for related concepts.

1) Description Relationship. For each linked concept of a mention in a description sentence, create a łhas
descriptionž relationship from the concept to the description sentence. For example, the relationship from łMD5ž
to łMD5 has been found to sufer from extensive vulnerabilitiesž in Fig. 4 is created in this way.

2) Extracted Open Relationship. For each open relationship (head, rel , tail) extracted in Substep 2, try to
map the element (i.e., head or tail) to a linked concept of the corresponding description sentence in the following
way: ind a linked concept c that makes the highest Jaccard coeicient between the element and the mention
of c in the sentence; if the Jaccard coeicient is larger than a predeined threshold (0.6 in our implementation),
then map the element to c . If both head and tail can be mapped to a concept (denoted by ch and ct respectively),

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 11

create a relationship rel from ch to ct . For example, the relationship (łMD5ž, łused asž, łChecksumž) and (łMD5ž,
łto verifyž, łData Integrityž) in Fig. 4 are created in this way.

3) Concept Association Relationship. For each pair of concepts c1 and c2, if the cosine similarity of their
Wikipedia2Vec embeddings [14] is higher than a threshold (0.8 in our implementation), then create an łassociated
tož relationship between them.

4.4 uery Scoping and Matching

Query scoping extracts diferent parts, i.e., functionalities, functional constraints, nonfunctional constraints, from
a code search query. The irst two parts represent basic funcationalities and additional funcational requirements
respectively, and the third part relects the nonfunctional concerns. These parts are used in diferent ways in
subsequent code snippets matching and explanation generation. Given a code search query we irst remove
the starting words for question, e.g., łhow tož and łhow can Iž. Then we use an NLP tool (e.g., spaCy in our
implementation) to analyze the part of speech and dependence tree of the remaining query. After that we extract
diferent parts from the query using linguistic rules. Applying linguistic rules on the NLP analysis results (i.e.,
part of speech and dependence tree) is a common way to extract functionality and constraints [17, 31, 58, 77].
We design the linguistic rules based on these previous works and make some adaptations on search queries.
For example, adverb or adverb clauses are connected to nonfunctional constaints based on the mined rules by
Dalpiaz et al. [17] and resultant decision tree by Hussain et al. [31] We randomly sample 50 question titles (not
involved in subsequent evaluation) as a validation dataset to iteratively reine and validate the rules by observing
the extraction results. In the rules, VERB, DOBJ, PREP, POBJ, and MOD denote verb, direct object, preposition,
preposition object, and modiier, respectively.

• Functionality: VERB or VERB DOBJ ;
• Functional Constraint : PREP POBJ, to VERB DOBJ, or using DOBJ ;
• Nonfunctional Constraint : adverbs, adverb clauses, relative clauses, or phrases such as in MOD way that
are used to modify or qualify the functionalities or functional constraints.

Using the above rules, for example, we can obtain the following results of query scoping, where the pink,
cyan, and orange parts represent functionality, functional constraint, and nonfunctional constraint, respectively.

calculate hash to verify ile integrity

read large ile in memory eicient way
Note that, there is no predeined and ixed set of non-functional requirements. The non-functional intents are

extracted from a given query using linguistic heuristics and based on the query content. Based on the results of
query scoping for a code search query, we compose the functionality part and functional constraint part together
to retrieve code snippets using an existing code search service, e.g., ł calculate hash to verify ile integrityž and
ł read large ilež are used to retrieve code snippets for above two queries respectively.

4.5 Explanation Generation

For the candidate code snippets returned by the code search service, XCoS generates the corresponding ex-
planations based on the conceptual associations between the code search query and the code snippets. These
explanations later are displayed in a structured way on the code search UI (see Sec. 5) to help the user to choose
the desired code snippets. For each candidate code snippet, the generated explanations include the following
three parts.
• Conceptual Association Paths: one ormultiple paths in the background knowledge graph that can potentially
associate the query and the code snippet.
• Related Descriptions: description sentences that may help explain the association between the query and
the code snippet.

ACM Trans. Softw. Eng. Methodol.

12 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

• Additional Suggestions: description sentences that are not so relevant to the query but the user may be
interested in.

4.5.1 Identification of Conceptual Association Path. To identify the association paths between a query and a code
snippet, we need to irst link the query and the code snippet to the concepts in the background knowledge graph
and then identify conceptual paths between the linked concepts of them.

The concept linking for the query is conducted in a similar way to the candidate concept mention identiication
in the extended knowledge extraction (see Sec. 4.3.3). We identify the noun phrases in the query and use all their
possible sub-phrases (including the phrases themselves) to match possible concepts. As the query is usually very
short and contains very little context, we do not conduct entity linking as Sec. 4.3.4 and consider all the candidate
concepts for further analysis of association paths.
The concept linking for the code snippet is conducted by analyzing the code identiiers. We use a static code

analysis tool (e.g., javalang [5] in our implementation) to extract all the identiiers in the code snippet, and then
use a tool called Sprial [10] to split the identiiers into words. After that, we use a tool called POSSE [27] (re-
implemented in Python) to analyze the part of speech of the words in each identiier and obtain the noun phrases
in it. To ensure the quality of concept linking, we ilter out stop words such as single letters and common verbs
like łupdatež based on a predeined list. For all the remaining noun phrases, we conduct mention identiication
and concept linking in a similar way to Sec. 4.3.3 and 4.3.4. During the process, all noun phrases obtained from
the code snippet are combined together as the context for concept linking. Note that the concept linking for code
snippets is independent of the query, so it can be done for all the code snippets oline if the codebase is available
to improve the eiciency of online code search.
For a set of linked concepts Cquery of the query and a set of linked concepts Ccode of the code snippet, we

identify all the pairs (cq , cc) (cq ∈ Cquery , cc ∈ Ccode) that satisfy one of the following three conditions.
• cc and cq are the same concept;
• cc and cq are neighbors in the background knowledge graph;
• cc and cq are connected by a path in which all the edges are hypernym/hyponym relationships (e.g., łinstance
ofž or łsubclass ofž) in the background knowledge graph.
For each pair of concepts (cq , cc) that satisies one of the above conditions, we treat cq and cc as the anchor

concepts and the path between them as an association path. Then, we can link the query part that cq appears
in to the association path. The association path provides a potential explanation for how the code snippet is
relevant to the query. For example, the path [MD5 − to veri f y → Data inteдrity] can explain the association
between the code snippets containing MD5 and the functional constraint to verify ile integrity of the query
calculate hash to verify ile integrity.

4.5.2 Identification of Related Descriptions. Description sentences of relevant concepts often can provide addi-
tional explanations for choosing or not choosing a candidate code snippet. For example, the description łMD5 has
been found to sufer from extensive vulnerabilitiesž can help users to exclude code snippets that use MD5 if they
seek a solution that is not vulnerable to attacks. For an association path, we identify related descriptions from the
description sentences of the anchor concept of the code snippet by measuring their relevance to diferent parts
(i.e., functionalities, functional constraints, nonfunctional constraints) of the query. To this end, we use Sentence-
BERT [64], which is suitable for measuring semantic textual similarity, to obtain the vector representations of
the candidate descriptions and diferent parts of the query and calculate their cosine similarity as Eq. 6 where
des is a candidate description, q_part is a part of the query, sbert (text) returns the vector representation of text
using Sentence-BERT. For the functionality part of the query, we select two candidate descriptions that have
the highest similarities calculated using Eq. 6 as related descriptions and use the similarities as their scores. For
each constraint part (functional or nonfunctional) of the query, we also select two candidate descriptions that
have the highest scores calculated using Eq. 7 which combines the similarities between the description and both

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 13

the constraint part (i.e., con) and the functionality part (i.e., f un) of the query. The two weights 0.7 and 0.3 are
experimentally determined based on a small validation dataset.

sim(des,q_part) = cosine (sbert (des), sbert (q_part)) (6)

score (des, con, f un) = 0.7 × sim(des, con) + 0.3 × sim(des, f un) (7)

We decide to select the two descriptions having the highest similarity scores based on the observation on some
validation examples and the discussion among the authors and some developers (not involved in evaluation). Two
description sentences can ensure good completeness and conciseness of the explanations, which is conirmed
by the results of RQ2 (see Section 6.2). We do not set a threshold for the similarity scores of the description
sentences, as we ind that the diference between the scores is generally small so that it is diicult to choose a
suitable threshold.

4.5.3 Identification of Additional Suggestions. In some cases the user may hope to see diversiied explanations
that cover some concerns not directly mentioned in the query. Therefore, for an anchor concept of the code
snippet, we identify some additional suggestions from its description sentences that are not identiied as related
descriptions. We consider all the remaining description sentences as the candidates and calculate their average
cosine similarity (as Eq. 6) with all the identiied related descriptions of the association paths ended with the
anchor concept. Based on the results we select two additional description sentences that have the median
similarities as the additional suggestions. The rationale for the selection is that the additional suggestions should
be similar to the related descriptions and at the same time relect diversiied perspectives of explanations. For
example, if users do not realize vulnerability issues when calculating hash to verify ile integrity, an additional
suggestion łMD5 has been found to sufer from extensive vulnerabilitiesž can prompt them to notice the problem.
We decide to select the two descriptions having the highest similarity scores based on the observation on some
validation examples (randomly sampled 50 question titles that are not involved in subsequent evaluation) and the
discussion among the authors and some developers. Two description sentences can ensure good completeness
and conciseness of the explanations, which is conirmed by the results of RQ2 (see Section 6.2). We do not set a
threshold for the similarity scores of the description sentences, as we ind that the diference between the scores
is generally small so that it is diicult to choose a suitable threshold.

5 UI DESIGN

XCoS supports explainable code search through an interactive UI as shown in Fig. 5, which can support the insight
I4 from our survey results. The UI displays the results of query scoping, the identiied conceptual association
paths and descriptions in a structured way and supports the user to interactively examine the candidate code
snippets based on related concepts and descriptions.
The UI includes three areas, i.e., Query Parts, Explanations, and Code Snippets. The Query Parts area

shows diferent parts of the query, i.e., functionalities, functional constraints, nonfunctional constraints (see
Sec. 4.4). For example, łcalculate hashž and łto verify ile integrityž shown in this area are the functionality
and the functional constraint of the query. These parts link to the conceptual association paths (see Sec. 4.5.1).
This area includes a special query part łSee alsož, which links to the additional suggestions (see Sec. 4.5.3). The
Explanations area shows the explanations generated for the current candidate code snippets. It organizes the
explanations in conceptual trees as follows. We collect all the anchor concepts of code snippets (see Sec. 4.5.1)
and try to build the hierarchical structure in trees between them. That is, if an anchor concept c1 is connected to
another anchor concept c2 though one or multiple hyponym relationships (e.g., łinstance ofž or łsubclass ofž)
in the background knowledge graph, then c1 and c2 are inserted to the same conceptual tree and the hyponym
relationships between them are reserved as the hierarchical structure in tree. For example, łCryptographic hash
functionž, łMD5ž, and łSHA-1ž are three anchor concepts of the code snippets, they are in the same conceptual

ACM Trans. Softw. Eng. Methodol.

14 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

Query Parts

Explanations Code Snippets

Fig. 5. User Interface of XCoS

tree. łMD5ž is a child of łCryptographic hash functionž in the tree since łMD5ž is a łinstance ofž łCryptographic
hash functionž, while łSHA-1ž is a superchild of łCryptographic hash functionž since łSecure Hash Algorithmsž
is a łsubclass ofž łCryptographic hash functionž and łSHA-1ž is a łinstance ofž łSecure Hash Algorithmsž. Here,
some concepts (e.g., łSecure Hash Algorithmsž) are not anchor concepts of code snippets, they appear in the
trees as they can help developers better understand the relationships between the anchor concepts. For each
anchor concept in the conceptual trees, the association paths ended with it and the related descriptions of the
paths are listed below it, categorized by the query parts linking to the paths. The additional suggestions of it is
also listed below it with the special query part łSee alsož. For example, below the anchor concept łMD5ž, the
association paths and related descriptions are displayed with the two query parts łcalculate hashž and łto verify
ile integrityž, and the additional suggestions are shown with łSee alsož. Note that, displaying all anchor concepts
of code snippets and the corresponding explanations may lead to information overload, we only keep the 15
anchor concepts with the highest relevance to the query. The relevance is measured by averaging the scores (see
Sec. 4.5.2) of the related descriptions below the anchor concepts. The Code Snippets area lists the candidate
code snippets. The anchor concepts of each code snippet are listed on the top of it. For example, the anchor
concepts łChecksumž, łSHA-2ž, and łCryptographic hash functionž are listed on the top of Code Snippet 150.

The UI provides interaction features based on the links between the contents of diferent areas. The conceptual
trees in Explanations area are built based on the anchor concepts of code snippets (the colors of the anchor
concepts in the Explanations area and the Code Snippets area are consistent), they can be naturally used to
group and ilter the code snippets. For each anchor concept in a conceptual tree, XCoS shows the number of the
corresponding related code snippets after the name of the concept. The user can determine whether a concept is
relevant to the query by reading the explanations below the concept. The explanations can be folded/unfoled by
clicking the name of the concept. Because the explanations are categorized by diferent query parts, thus using
the query parts to control the display of the explanations. The user can click a query part in the Query Parts

area to show or hide the corresponding explanations. If the user think an anchor concept is relevant to the query,
he/she can select the concept by checking the corresponding checkbox in front of it. The Code Snippets area

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 15

will be updated accordingly to show only the code snippets that are related to all the currently selected concepts.
For example, after reading the explanations the user know that checksum is often used to verify ile integrity and
SHA-2 is more secure than MD5. He/she can then select łchecksumž and łSHA-2ž and check all the candidate
code snippets related to both the concepts.

6 EVALUATION

The constructed background knowledge graph in oline phase contains 50,472 software development related
concepts, 310,451 relationships (85,913 relationships from Wikidata, and 224,538 additional open relationships
and association relationships from Wikipedia), and 239,368 concept descriptions. We encapsulate the concepts
and relationships in the knowledge graph with a set of data structures (i.e., Python classes) and store/load the
concepts/relationships to/from iles via object serialization/deserialization (i.e., dump/load APIs in Python pickle
package). We do not apply semantic web technology or graph database (e.g., Neo4j), since we do not use complex
graph queries and it is more eicient to directly operate on objects in memory. In online phase, we take all
the Java code snippets (about 500K Java methods) in the CodeSearchNet [30] dataset as the codebase, and use
Elasticsearch to build a code search service.
Based on the background knowledge graph and code search service, we conduct a series of experiments to

evaluate the quality of the key steps of XCoS and the efectiveness and usefulness of XCoS by answering the
following research questions. All the data and results can be found in our replication package [7].

RQ1 (Quality): What is the intrinsic quality of the results of the key steps of XCoS?
RQ2 (Efectiveness): How efective is XCoS in generating explanations for code search in terms of complete-

ness, conciseness, and readability?
RQ3 (Usefulness): How useful is XCoS in helping developers during code search tasks?

6.1 uality of Key Steps (RQ1)

We evaluate the quality of the results of the main steps of the approach (see Section 4), including software
development related concept identiication, concept linking for description, and concept linking for

code. These three steps are the key for oline knowledge graph construction and concept linking in codebase.
We don’t evaluate query scoping because it can only be used online and its quality is relected in the evaluation
of the quality of generated explanations (see Section 6.2).

6.1.1 Protocol. As these steps involve large numbers of results (i.e., software development related concepts,
concept linkings of descriptions, and concept linkings of code snippets), we randomly sample some from all
the results. For concept identiication, we randomly sample S1 software development related concepts; For
concept linking for description, we randomly sample S2 descriptions; For concept linking for code, we
randomly sample S3 code snippets from the codebase. The sample sizes S1 and S2 are both determined to 384
using a statistical sampling method [72], which ensures the estimated accuracy is in 0.05 error margin at 95%
conidence level (In practice, the sample sizes can be calculated by using Sample Size Calculator5). The sample
size S3 is 50. There are two reasons why we don’t apply statistical sampling method for S3: 1) examining the
linkings in code is much more diicult and time-consuming; 2) the concept linking algorithm for code is the same
as for description.

We invite two MS students (who are not involved in this study and have more than 3 years Java development
experience) to independently examine the accuracy of the three steps. For concept identiication, the annotators
are asked to examine whether the identiied concepts are related to software development. They are provided
the names, deinitions, and corresponding Wikipedia pages of the concepts to make the binary decisions (i.e.,

5https://www.surveysystem.com/sscalc.htm

ACM Trans. Softw. Eng. Methodol.

16 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

related to or not related to software development). For concept linking for description, the annotators are
asked to examine whether the identiied mentions and linked concepts for descriptions are correct. They are
provided the descriptions in which the mentions are identiied, the Wikipedia pages containing the descriptions,
and the Wikipedia pages of the linked concepts to make the binary decisions (i.e., correct or not correct). For
concept linking for code, the annotators are asked to examine whether the identiied mentions and linked
concepts for code are correct. They are provided the code snippets in which the mentions are identiied and the
Wikipedia pages of the linked concepts to make the binary decisions (i.e., correct or not correct). We compute
Cohen’s Kappa [53] to evaluate the inter-rater agreement. For the samples that the two annotators disagree, they
discuss and come to a consensus. Based on the consensus annotations, we evaluate the quality of the results of
the key steps.

6.1.2 Results. Table 2 shows the evaluation results. The column Accuracy is the accuracy after resolving the
disagreements. The column Kappa is the Kappa inter-rater agreement. The accuracies of the three key steps
are 87.2%, 95.2% and 72.3% respectively. The Kappa agreements are all above 0.80, which indicates substantial
agreement between the two annotators. It can be seen that we achieve high accuracy in concept identiication
and description concept linking, which ensure that the quality of the background knowledge graph we construct
is high. The accuracy of concept linking for code is also reasonably high, but is much lower than that of concept
linking for description.
The same concept linking algorithm performs much better on descriptions than on code snippets, which is

mainly due to the following reasons. First, Wikipedia is a high-quality crowdsourced encyclopedic knowledge
base, and many of the concepts mentioned in the descriptions we extracted from it are directly marked with
hyperlinks and linked to the corresponding concepts. We fully consider this prior information (see Section 4.3.3)
when performing mention recognition and candidate matching on the descriptions. But this information is not
available for the code, so the candidate concepts of the mentions in code are usually more, which makes the
concept linking more diicult. For example, as exempliied in Section 4.3, for the łbuferž in the description, we
can just keep the concept of łData buferž when matching candidates. But for the łbuferž that appears in the code,
we have to keep all possible 26 candidate concepts. Second, the concept and word embedding model we currently
use is the pre-trained Wikipedia2Vec model trained on Wikipedia corpus. It may not be entirely appropriate
for the calculation of ctxS (c, ctx) for code since the ctx is composed using code identiiers. For example, łpathž
and łilež often appear together in code and should have a high similarity, but the similarity calculated using
the Wikipedia2Vec embeddings is only 0.623. This is because in general corpus, łpathž often means łroadž and
more often appears together with other words like łmountainž and łwoodsž (their similarities with łpathž are
0.731 and 0.720 respectively). In future, we will consider to train an embedding model that can jointly map words,
concepts and code identiiers into the same vector space to overcome the problem.
In fact, the incorrectly linked concepts in code snippets do not have a large negative impact on the whole

approach. First, the incorrect concepts usually have no conceptual association paths with the query, so they
will not appear in the generated explanations. For example, if łbuferž in a candidate code snippet for the query
read ile is linked to łOptical buferž, the incorrect linking does not introduce noise since łOptical buferž has no
associated path with the query. Second, since incorrect linkings may cause some useful code snippets not to be
placed in the right group and the user can’t ind the code they want, we let the code search service return a large
number (e.g., 200) of code snippets to avoid this problem.

6.1.3 Summary. Our evaluation shows that the quality of the extracted background knowledge and the concept
linkings in codebase is generally high.

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 17

Table 2. Accuracy of the Three Key Steps

Step Accuracy Kappa

Concept Identiication 87.2% 0.887

Concept Linking for Description 95.2% 0.898

Concept Linking for Code 72.3% 0.834

6.2 Efectiveness for Generating Explanations (RQ2)

We perform an empirical evaluation for assessing the explanations generated by XCoS, similar to previous
research [46, 56, 73].

6.2.1 Tasks. Since the queries in the CodeSearchNet dataset are code comments and cannot represent real
development tasks and search queries, we construct experimental tasks and corresponding search queries from
SO questions. On the other hand, many concerns of developers are not only contained in the question titles,
but also relected in the question bodies [41, 45]. Thus, instead of using SO question titles directly as tasks, we
construct them as follows. We select questions tagged with at least one of the six most popular tags (i.e., java,
python, javascript, php, c#, android) from the SO data dump [1] as the corpus. In order to ensure the quality of
selected questions, we only keep questions with at least one upvote, leading to a corpus with 304,976 questions.
Then, we use an NLP tool (spaCy) to analyze the titles of these questions and extract the VERB OBJECT structures
as candidate functionalities. For example, from the question title łhow to read ile in Javaž we extract łread ilež.
We keep those candidate functionalities that appear more than 3 times, and obtain inal code search tasks based
on the remaining candidate functionalities.
We deine three diiculty levels (i.e., easy, medium, and hard) for tasks based on constraints, respectively

indicating no constraints, one functional or nonfunctional constraint, and multiple constraints. We hope that the
code search tasks can cover diferent diiculty levels. The easy tasks are obtained by randomly sampling from the
candidate functionalities and the sampled functionalities are taken as search queries directly. For medium and
hard task, we randomly sample some candidate functionalities and try to obtain search queries by completing
them with constraints. For example, we can add a nonfunctional constraint łin memory eicient wayž to łread
large ilež since memory issues are mentioned in the bodies of some SO questions on reading large ile. The
constrains are obtained through: 1) SO question titles; 2) SO question bodies; 3) Google’s query autocompletion API
(https://suggestqueries.google.com/). For the irst way, we directly obtain constraints from existing question titles.
For the second way, we try to express the constraints (e.g., łin a memory eicient wayž) with the words/phrases
(e.g., łmemory eicientž) used in the original question bodies. For the third way, since the autocompletion API
may suggest multiple autocompletions for a functionality, we irst ilter out the irrelevant/useless suggestions
(e.g., language restrictions like łin pythonž) for our development tasks and then select the irst suggestion as the
constraint. The above processes are relatively objective thus can avoid introducing biases. Note that during the
process, the candidate functionalities that are similar to the existing task topics and those that are not successfully
completed are skipped. For each task, we ind an SO question that corresponds to its functionality and select one
description from the question body as its context. In this way, we obtain 10 code search tasks (4 easy, 4 medium, 2
hard) as shown in Table 3. The 10 queries cover diferent problem topics (e.g., reading ile, converting byte array),
constraints, and diiculties, thus can relatively realistically relect the diferent code search scenarios. In the above
process, we do not sample a ixed number of candidate functionalities (extracted from Stack Overlow queries)
through statistical methods (as in RQ1) in advance, because many candidate functionalities cannot become a
task (e.g., skipped due to having duplicated problem topic with existing tasks) so that we cannot guarantee

ACM Trans. Softw. Eng. Methodol.

18 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

Table 3. Ratings for 10 Tasks on Completeness, Conciseness and Readability

ID Task Diiculty
Completeness Conciseness Readability
1 2 3 4 1 2 3 4 1 2 3 4

T1 get absolute url easy 0 1 6 5 0 7 3 2 0 2 4 6

T2 draw circle easy 0 0 6 6 0 1 2 9 0 0 4 8

T3 add cookie easy 0 0 5 7 0 1 9 2 0 0 5 7

T4 post json easy 0 1 2 9 0 1 5 6 0 0 3 9

T5 read XML using XPath medium 0 2 7 3 0 1 8 3 0 0 5 7

T6 get icon from website medium 0 2 5 5 0 2 7 3 0 2 3 7

T7 convert byte array to BASE64 medium 0 2 6 4 0 4 6 2 0 2 5 5

T8 read large ile in memory eicient way medium 0 0 2 10 0 0 6 6 0 0 0 12

T9 check url for malware in a safe way hard 0 0 3 9 0 2 5 5 0 0 3 9

T10
calculate hash to verify ile integrity
and least vulnerable to attacks

hard 1 0 4 7 0 0 4 8 0 0 3 9

Sum 1 8 46 65 0 19 55 46 0 6 35 79

how many tasks can be obtained from the sampled functionalities. To this end, we keep sampling the candidate
functionalities until 10 tasks are obtained.

6.2.2 Protocol. We invite 12 MS students (experienced in Java development) to evaluate the quality of the
explanations generated by XCoS. Their programming expertise is assessed through a survey administered to 50
graduate students. The 12 most experienced students are selected and they have at least 3 years’s Java development
experience. The participants are from the same institution as the authors but have no academic relationship with
the authors. In addition, they are not involved in this work before invited to participant in the experiments, thus
have no potential conlicts of interest. For each task we generate explanations by searching the query of the task
in XCoS. The participants are asked to evaluate the generated explanations in terms of completeness, conciseness,
and readability on a 4-points Likert scale [40] (1-disagree; 2-somewhat disagree; 3-somewhat agree; 4-agree) by
the following statements.

1) Completeness. The explanations contain all the necessary information for explaining search results.
2) Conciseness. The explanations contain no unnecessary or redundant information for explaining search

results.
3) Readability. The explanations are well-organized and easy to understand.
Note that in order to reduce bias, the second statement is phrased negatively to maintain the interpretation of

the answers similar to all three statements. After the participants inish the evaluation, we ask them to explain
the low ratings (1 or 2).

6.2.3 Results. The results of the ratings for each task are shown in Table 3 and the ratings for the three statements
across all tasks are shown in Figure 6. For completeness of XCoS, 54.2% of the answers are 4 (agree), 38.3% are 3
(somewhat agree), 6.7% are 2 (somewhat disagree), and 0.8% are 1 (disagree). For conciseness of XCoS, 38.3% of
the answers are 4 (agree), 45.8% are 3 (somewhat agree), 15.8% are 2 (somewhat disagree), and there are no 1
(disagree) answers. For readability of XCoS, 65.8% of the answers are 4 (agree), 29.2% are 3 (somewhat agree),
5.0% are 2 (somewhat disagree), and there are no 1 (disagree) answers. We use one sample T-test [68] to verify the
statistical signiicance of the diference between the participants’ ratings and random ratings. The null hypothesis
is that the ratings for completeness, conciseness, and readability are random and the mean of the ratings for each

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 19

Fig. 6. Ratings of Completeness, Conciseness and Readability of Explanations

property is 2.5. The results show that for each property the statistical diference is signiicant (p << 0.01), so we
reject the null hypothesis.

For conciseness, there are 19 answers 2 (somewhat disagree). The reasons given by the participants are mainly
that simple tasks usually do not require much explanation, and the explanation information we provide is
redundant for these tasks. For example, the explanations of łcirclež for T2 is unnecessary.

6.2.4 Summary. The participants consider that the explanations generated by XCoS are complete, concise, and
readable.

6.3 Usefulness of XCoS (RQ3)

We evaluate the usefulness of XCoS in code search tasks, that is, choosing the most suitable code snippet for a
given task. Note that, we focus on helping developers by providing explanations for search results, instead of
proposing a stronger search algorithm. To this end, we evaluate the usefulness of XCoS through whether the
explorations can help the developers better complete code search tasks. The efectiveness of query scoping can
bee also relected in this evaluation, since the explanations generated by XCoS are organized by the corresponding
query parts, which greatly inluence the choosing process of code snippets (see Section 5).

6.3.1 Baseline. For comparison, we implement a baseline that directly displays the results returned by the code
search service. The baseline has a UI similar to XCoS, but only shows the code snippets without explanation
information. Other state-of-the-art code search techniques are not compared, since the key to comparison is
whether there are explanations for the search results returned by the same search service, instead of comparing
the efectiveness of diferent search techniques. We build the search service using Elasticsearch instead of state-
of-the-art code search techniques, as most practical code search services are built based on information retrieval
based search engines (see the insight I0 of our survey) and Elasticsearch is the most popular one of such engines.

6.3.2 Protocol. We use the same tasks in Section 6.2 to evaluate the usefulness of XCoS, and randomly divide
the tasks into two roughly equivalent groupTA andTB . In each group, the number of tasks in easy, medium, hard
level are 2, 2, 1 respectively. We invite 14 MS students (not involved in RQ2) with 1-5 years’ Java programming
experience to participate this experiment. Their programming expertise is assessed through a survey distributed
to 50 graduate students and they are divided into three experience levels (i.e., beginners, intermediate, advanced)
according to the survey. The invited students have diferent programming experience, which ensure the diversity
of the participants. In addition, most of them (except beginners) have participated in the development of some
medium/large scale projects (> 10,000 LOC), and some participants have professional programming experience
such as working or interning in some companies for a period of time. We further divide them into two łequivalentž
groups (GA and GB) and each group with 2 beginner, 3 intermediate, and 2 advanced.

ACM Trans. Softw. Eng. Methodol.

20 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

Table 4. Average Accuracy, Time and Ranking

Average Accuracy Average Time Average Ranking

XCoS 74.3% 172.9s 32.3

Baseline 52.9% 147.7s 16.3

We ask the participants to complete code search tasks with XCoS and the baseline by adopting a balanced
treatment distribution for the groups. Participants in GA are asked to complete the tasks in TA with XCoS and
complete the tasks in TB with the baseline. Conversely, participants in GB are asked to complete the tasks in TB
with XCoS and complete the tasks in TA with the baseline. Overall, each participant is asked to complete all the
10 tasks, 5 with XCoS and 5 with the baseline. Before starting the tasks, we give these participants a 20-minute
training session and provide some examples to familiarize them with XCoS and the baseline. When completing
the tasks with baseline, the participants are allowed to use external search engines like Google and Bing. The
reason is that in practice some developers will consult these external resources to check whether the code snippets
meet their requirements (see the results of our developer survey in Section 3). For each participant, the tasks
are done by interleaving XCoS and the baseline. At the same time, the order in which tasks are completed is
completely random and has nothing to do with diiculty.

For each task, a participant is asked to select the most suitable code snippet from search results and submit it
as the answer. Moreover, we ask the participants to record the answer’s ranking in the search results and the
reason for choice. If participants cannot ind a suitable code snippet, they can submit an empty answer. The
participants have a time limit of 15 minutes on each task, after which they are considered to submit an empty
answer. When all participants have completed their tasks, we assess the correctness of the answers. Note that
it is impossible to build an oracle to specify a unique correct answer for each task, as the code base contains
about 500K code snippets and a task may be correctly completed by diferent code snippets. To this end, for each
task we mix together the answers submitted by all participants (completed with XCoS and the baseline), and
then two authors independently assess the correctness of each answer comparatively. A correct answer must
satisfy both functionality and constraints of the task query, but is allowed for redundant parts (such as a few extra
operations). We compute Cohen’s Kappa [53] to evaluate the inter-rater agreement between the two authors.
For the answers that the two annotators disagree, a third author resolves the conlicts based on the major-win
strategy. Finally, we also conduct interviews to collect participants’ feedback on XCoS. The participants are
asked to answer whether XCoS is useful and why.
Note that, we do not use the ranking-based metrics (e.g., top-k or ranked position) to evaluate XCoS, as

the ranked lists are returned by the code service and the rankings of the correct answers are meaningless for
evaluating XCoS. Through the explanations generated by XCoS, users can quickly group and ilter the code
snippets based on their requirements or concerns (see Section 5), rather than must browse and check the results
in the ranked list linearly (i.e., check the searched code snippets one-by-one). Therefore, the original ranking
information cannot relect the efectiveness of completing tasks with XCoS. For example, for the query łcalculate
hash to verify ilež shown in Figure 5, when the users check the checkboxes in front of the concepts łChecksumž
and łSHA-2ž, theCode Snippets area will update and only display the code snippets containing the two concepts.
Then, the users may directly choose the irst code snippet (i.e., Code Snippet-49) in the updated area as the answer.
Although the code snippet is ranked 49-th in the original ranked list, the users can skip the 48 code snippets
ranked in front of it and quickly choose it when determining to use łChecksumž and łSHA-2ž.

6.3.3 Results. Figure 7 and Table 4 show the accuracy (i.e., the ratio that the right code snippets were selected by
a participant for a task group), the completion time, and the answer’s ranking over the tasks when completed
with XCoS and without XCoS respectively. The Kappa agreement is 0.82, which indicates substantial agreement

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 21

(a) Accuracy (b) Time (c) Ranking

Fig. 7. Usefulness Evaluation for Code Search Tasks

Table 5. Accuracy Analysis

Easy Medium Hard Beginner Intermediate Adavanced

XCoS 96.4% 75.0% 28.5% 65.0% 76.7% 80.0%

Baseline 82.1% 46.4% 7.1% 50.0% 53.3% 55.0%

between the two annotators. Here, because 51 (18 with XCoS and 33 with the baseline) of the total 140 submitted
answers are assessed as incorrect, we exclude them when counting the time and ranking. According to the results,
compared to without XCoS, using XCoS the participants complete the tasks 40.5% more accurately (21.4% on
average) in comparable time by choosing the answers from a wider range of code snippets. We use Welch’s
T-test [83] for verifying the statistical signiicance of the diferences. The improvement of accuracy of XCoS is
statistically signiicant (p = 0.007, efect size = 1.503), while the extra time spent is not signiicant (p = 0.417, efect
size = 0.176). In addition, Table 5 gives detailed accuracy from diferent aspects. It shows that XCoS can improve
accuracy for tasks of diferent diiculty levels and developers with diferent programming experience levels.

The improvement of XCoS in accuracy mainly comes from two aspects. First, users can accurately judge which
concepts are related to the query by reading the association paths and descriptions we provide. For example,
for T10, some participants who use XCoS write that łFrom the provided information, it is known that SHA-512
is a more secure hash algorithmž, and for this reason they choose the code snippets using SHA-512 instead of
MD5. Second, our grouping of code snippets allows users to eiciently ilter out a lot of top-ranked but irrelevant
code snippets, allowing them to ind the low-ranked correct answers. By checking the reasons given by the
participants for their answers, we ind that many mention that they ilter the code snippets using the concept
checkboxs while using XCoS. Without the grouping and iltering, some lower-ranked correct answers might not
be discovered by users at all. This can also be seen from the ranking data in Figure 7 and Table 4, for tasks done
correctly with XCoS the answers are chosen from a wider range of rankings.
Of course, we also ind some problems. For few beginner participants, the explanations we provide do not

improve the likelihood that they will choose the correct answer. We analyze the reasons they give for their
answers and ind that although we provide a lot of explanations, they still lack the relevant background knowledge
to judge whether a code snippet is related to the query. For example, for T10, a beginner participant choose an
incorrect code snippet because łI ilter the code snippets using both Hash function and Data integrity and choose

ACM Trans. Softw. Eng. Methodol.

22 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

one from the remaining code snippetsž. But in fact this code snippet has nothing to do with the functionality of
the task.
After analyzing the feedback, we ind that all participants think our tool to be useful in most cases. The

usefulness is mainly relected in the following facts: it can quickly help ilter out irrelevant code and greatly
reduce the number of code snippets that need to be examined; it can help familiarize themselves with some
unknown concepts and rationales, and can greatly reduce the time to seek the information from external resources
(e.g., Google); it can help them focus on some key information, and can signiicantly improve the conidence of
choice. Some participants mention that the explanations provided by XCoS are not very helpful on simple tasks
that do not need too much background knowledge.

6.3.4 Summary. Our approach signiicantly improves the accuracy and conidence for code search tasks and is
considered useful.

6.4 Threats to Validity

Data sampling and data annotation are involved in RQ1 and RQ3. Thus common threats to the internal validity
include randomness of the sampling and subjective judgment of the involved annotators. To minimize such
threats, we follow commonly used sampling and data analysis techniques, such as involving multiple annotators
and conlict resolution steps and reporting agreement coeicients. A threat to the external validity is that we only
use a limited number of tasks (i.e., 10 tasks) in the evaluation. Therefore, our indings may not be generalizable.
To minimize such threats, we sample the tasks from Stack Overlow and try to ensure the diversity of tasks as
much as possible by covering diferent topics and diiculties.

7 RELATED WORK

Early research on code search mainly use information retrieval technologies to establish the association between
code and query [15, 51]. Thanks to the eiciency, the information retrieval technologies are often used to build
Internet-scale code search engines [24]. Some studies take into account code characteristics by organizing code
into directed graphs and transform a code search task into a graph search task. For example, McMillan et al. [54]
propose Portfolio, a code search engine that combines keyword matching with PageRank and SAN scores based
on the API call graph to return a chain of functions. Li et al. [39] further propose a relation-based code search
framework for JavaScript RACS, which can structurally match the action graph parsed from the query with the
call graph parsed from the code to improve the accuracy. However, these works do not consider the conceptual
association between query and code, nor provide explanations for the search results.

Recently, some studies use deep learning models to match query with code at the semantic level [22, 25, 26, 38,
47, 69, 78]. Gu et al. [25] propose DeepCS, which relies on a LSTM-based deep neural network to encode the code
snippet and query into a same vector space and use the cosine similarity between query vector and the code
vector as the matching score. Similarly, Sachdev et al. [69] also propose a code search tool named NCS, which
combines Word2Vec and TF-IDF to generate vector representations for code snippets and query and calculates
the distance between their vectors as a relevance score. However, these deep learning based approaches cannot
provide explainability.
An important factor afecting the accuracy of code search is the lexical gap between query and code. Many

existing studies focus on query expansion and reformulation [28, 29, 44, 50, 52, 62, 79] to solve the lexical gap
problem. Hill et al. [29] reformulate queries with natural language phrasal representations of method signatures.
Haiduc et al. [28] propose a machine learning based approach to reformulate queries, which can automatically
recommend a reformulation strategy based on the query properties. Lu et al. [50] also extend queries with
synonyms based on WordNet to improve the hit rate of code search. Lv et al. [52] propose CodeHow that can
expand the query with potential relevant APIs and retrieve code by considering both text similarity and potential

ACM Trans. Softw. Eng. Methodol.

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 23

APIs. Wang et al. [79] propose a learning based approach to mine domain glossary and show that the mined
glossary can be used to expand search queries. Recently, Liu et al. [44] propose NQE model to predict the
keywords related to the query from the corpus, so as to expand the query. However, these methods cannot bridge
background knowledge gap between query and code.

Feature location, concept location, and bug localization are special code search scenarios that aim to retrieve
code in a single project. According to the types of used analysis, the proposed approaches can be classiied into
diferent categories [19], including textual [16, 33, 55], structural [21, 37, 65], historical [34, 81, 84] and dynamic
types. Besides applying individual analysis, recent approaches [20, 81] combine diferent types of analysis to
compensate for the limitations.
There are some works focusing on interactive and explanatory code search [48, 49, 80]. Wang et al. [80]

propose an approach to improve feature location and code search with multi-faceted interactive exploration.
This approach automatically extracts and mines multiple syntactic and semantic facets from candidate program
elements. Lu et al. [49] propose INQRES, a code search tool that helps user improve queries in an interactive
way. Liu et al. [48] propose CodeNuance, which utilizes diferencing and visualization to solve 1) many pieces of
online code are largely similar but subtly diferent; 2) several pieces of code may form complex relations through
their diferences. These methods lack explanatory information on the background knowledge level of the search
results.
Explainable artiicial intelligence (XAI) is a trending research direction and some researchers have explored

the explainability problem for software engineering, especially for software defect prediction. There are some
research works to make the defect prediction models more practical, explainable, and actionable [74, 75], including
investigating practitioners’ needs of explainability of defect prediction models [32], developing line-level just-
in-time defect prediction approaches and leveraging model-agnostic techniques (e.g., LIME) to improve the
explainability [23, 59ś61, 82], and applying the more explainable models to software quality assurance [63].

8 CONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach (called XCoS) to support explainable code search based on query scoping and
knowledge graph. It can bridge the background knowledge gap between the query and the code. Our evaluation
conirms the intrinsic quality of the constructed background knowledge graph and the generated explanations
for search results. It also shows the usefulness of XCoS in code search tasks. In the future, we will improve and
extend the approach from several aspects. First, we will train an embedding model that simultaneously considers
the semantic relationships of concepts, words, and code identiiers. Second, we will incorporate more knowledge
resources such as Stack Overlow to construct a more informative background knowledge graph. Third, we will
design our UI interaction to be easier to use based on user feedback. Fourth, we will explore the possibility of
using the background knowledge graph to directly improve code search algorithms.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant 61972098.

REFERENCES
[1] 2021. Stack Overlow data dump version from March 4, 2021. Retrieved September 4, 2021 from https://archive.org/download/

stackexchange/

[2] 2021. Wikidata data dump version from November 24, 2021. Retrieved November 24, 2021 from https://dumps.wikimedia.org/wikidatawiki/

entities/

[3] 2021. Wikipedia data dump version from December 20, 2021. Retrieved December 20, 2021 from https://dumps.wikimedia.org/enwiki/

[4] 2022. Elasticsearch. Retrieved March 5, 2022 from https://www.elastic.co/elasticsearch/

[5] 2022. javalang. Retrieved March 5, 2022 from https://github.com/c2nes/javalang

[6] 2022. neuralcoref. Retrieved March 5, 2022 from https://github.com/huggingface/neuralcoref

ACM Trans. Softw. Eng. Methodol.

https://archive.org/download/stackexchange/
https://archive.org/download/stackexchange/
https://dumps.wikimedia.org/wikidatawiki/entities/
https://dumps.wikimedia.org/wikidatawiki/entities/
https://dumps.wikimedia.org/enwiki/
https://www.elastic.co/elasticsearch/
https://github.com/c2nes/javalang
https://github.com/huggingface/neuralcoref

24 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

[7] 2022. Replication Package. Retrieved March 5, 2022 from https://xcos-replicationpackage.github.io/

[8] 2022. searchcode. Retrieved March 5, 2022 from https://searchcode.com/

[9] 2022. spaCy. Retrieved March 5, 2022 from https://spacy.io/

[10] 2022. Sprial. Retrieved March 5, 2022 from https://github.com/casics/spiral

[11] 2022. Stack Overlow Question 13269606. Retrieved March 5, 2022 from https://stackoverlow.com/questions/13269606

[12] 2022. Wikidata. Retrieved March 5, 2022 from https://www.wikidata.org/

[13] 2022. Wikipedia. Retrieved March 5, 2022 from https://en.wikipedia.org/

[14] 2022. Wikipedia2Vec. Retrieved March 5, 2022 from https://wikipedia2vec.github.io/wikipedia2vec/

[15] Sushil Krishna Bajracharya, Trung Chi Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, and Cristina Videira Lopes. 2006.

Sourcerer: a search engine for open source code supporting structure-based search. In Companion to the 21th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon,

USA. ACM, 681ś682.

[16] Lauren R. Biggers, Cecylia Bocovich, Riley Capshaw, Brian P. Eddy, Letha H. Etzkorn, and Nicholas A. Kraft. 2014. Coniguring latent

Dirichlet allocation based feature location. Empir. Softw. Eng. 19, 3 (2014), 465ś500. https://doi.org/10.1007/s10664-012-9224-x

[17] Fabiano Dalpiaz, Davide Dell’Anna, Fatma Basak Aydemir, and Sercan Çevikol. 2019. Requirements classiication with interpretable

machine learning and dependency parsing. In 2019 IEEE 27th International Requirements Engineering Conference (RE). IEEE, 142ś152.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),

Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, 4171ś4186.

[19] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013. Feature location in source code: a taxonomy and survey. J.

Softw. Evol. Process. 25, 1 (2013), 53ś95. https://doi.org/10.1002/smr.567

[20] Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. 2013. Integrating information retrieval, execution and link analysis algorithms to

improve feature location in software. Empir. Softw. Eng. 18, 2 (2013), 277ś309. https://doi.org/10.1007/s10664-011-9194-4

[21] Brian P. Eddy, Nicholas A. Kraft, and Jef Gray. 2018. Impact of structural weighting on a latent Dirichlet allocation-based feature

location technique. J. Softw. Evol. Process. 30, 1 (2018). https://doi.org/10.1002/smr.1892

[22] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming

Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Findings of the Association for Computational

Linguistics: EMNLP 2020, Online Event, 16-20 November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and Yang Liu

(Eds.). Association for Computational Linguistics, 1536ś1547.

[23] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-based Line-Level Vulnerability Prediction. In Proceedings of

19th IEEE/ACM International Conference on Mining Software Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022. ACM, 608ś620.

https://doi.org/10.1145/3524842.3528452

[24] Rosalva E. Gallardo-Valencia and Susan Elliott Sim. 2009. Internet-Scale Code Search. In Proceedings of 2009 ICSE Workshop on

Search-Driven Development-Users, Infrastructure, Tools and Evaluation. 49ś52. https://doi.org/10.1109/SUITE.2009.5070022

[25] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In Proceedings of the 40th International Conference on Software

Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark

Harman (Eds.). ACM, 933ś944.

[26] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele

Tufano, Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. 2021. GraphCodeBERT:

Pre-training Code Representations with Data Flow. In Proceedings of 9th International Conference on Learning Representations, ICLR 2021,

Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=jLoC4ez43PZ

[27] Samir Gupta, Sana Malik, Lori L. Pollock, and K. Vijay-Shanker. 2013. Part-of-speech tagging of program identiiers for improved

text-based software engineering tools. In Proceedings of IEEE 21st International Conference on Program Comprehension, ICPC 2013, San

Francisco, CA, USA, 20-21 May, 2013. IEEE Computer Society, 3ś12.

[28] Sonia Haiduc, Gabriele Bavota, AndrianMarcus, Rocco Oliveto, Andrea De Lucia, and TimMenzies. 2013. Automatic query reformulations

for text retrieval in software engineering. In Proceedings of 35th International Conference on Software Engineering, ICSE ’13, San Francisco,

CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer Society, 842ś851.

[29] Emily Hill, Lori L. Pollock, and K. Vijay-Shanker. 2011. Improving source code search with natural language phrasal representations of

method signatures. In Proceedings of 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Lawrence,

KS, USA, November 6-10, 2011, Perry Alexander, Corina S. Pasareanu, and John G. Hosking (Eds.). IEEE Computer Society, 524ś527.

[30] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet challenge: Evaluating

the state of semantic code search. arXiv preprint arXiv:1909.09436 (2019).

[31] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. 2008. Using linguistic knowledge to classify non-functional requirements in

SRS documents. In Natural Language and Information Systems: 13th International Conference on Applications of Natural Language to

ACM Trans. Softw. Eng. Methodol.

https://xcos-replicationpackage.github.io/
https://searchcode.com/
https://spacy.io/
https://github.com/casics/spiral
https://stackoverflow.com/questions/13269606
https://www.wikidata.org/
https://en.wikipedia.org/
https://wikipedia2vec.github.io/wikipedia2vec/
https://doi.org/10.1007/s10664-012-9224-x
https://doi.org/10.1002/smr.567
https://doi.org/10.1007/s10664-011-9194-4
https://doi.org/10.1002/smr.1892
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1109/SUITE.2009.5070022
https://openreview.net/forum?id=jLoC4ez43PZ

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 25

Information Systems, NLDB 2008 London, UK, June 24-27, 2008 Proceedings 13. Springer, 287ś298.

[32] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and John C. Grundy. 2021. Practitioners’ Perceptions of the Goals and Visual Explanations

of Defect Prediction Models. In Proceedings of 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, Madrid,

Spain, May 17-19, 2021. IEEE, 432ś443. https://doi.org/10.1109/MSR52588.2021.00055

[33] Huzefa H. Kagdi, Malcom Gethers, and Denys Poshyvanyk. 2013. Integrating conceptual and logical couplings for change impact

analysis in software. Empir. Softw. Eng. 18, 5 (2013), 933ś969. https://doi.org/10.1007/s10664-012-9233-9

[34] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. 2013. Where Should We Fix This Bug? A Two-Phase Recommendation

Model. IEEE Trans. Software Eng. 39, 11 (2013), 1597ś1610. https://doi.org/10.1109/TSE.2013.24

[35] Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal, Mausam, and Soumen Chakrabarti. 2020. OpenIE6: Iterative Grid Labeling and

Coordination Analysis for Open Information Extraction. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2020, Online, November 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for

Computational Linguistics, 3748ś3761.

[36] Phong Le and Ivan Titov. 2018. Improving Entity Linking by Modeling Latent Relations between Mentions. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers,

Iryna Gurevych and Yusuke Miyao (Eds.). Association for Computational Linguistics, 1595ś1604.

[37] Bixin Li, Xiaobing Sun, and Hareton Leung. 2012. Combining concept lattice with call graph for impact analysis. Adv. Eng. Softw. 53

(2012), 1ś13. https://doi.org/10.1016/j.advengsoft.2012.07.001

[38] Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu, Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang, Weizhu Chen, and Nan Duan.

2022. CodeRetriever: Unimodal and Bimodal Contrastive Learning. arXiv preprint arXiv:2201.10866 (2022).

[39] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. 2016. Relationship-aware code search for JavaScript

frameworks. In Proceedings of 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, November

13-18, 2016, Seattle, WA, USA. ACM, 690ś701.

[40] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of psychology (1932).

[41] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele Lanza. 2019. Pattern-based mining of opinions in Q&A

websites. In Proceedings of 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 548ś559.

[42] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele Lanza. 2019. Pattern-based mining of opinions in Q&A

websites. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019.

IEEE / ACM, 548ś559.

[43] Charles X. Ling and Chenghui Li. 1998. Data Mining for Direct Marketing: Problems and Solutions. In Proceedings of the Fourth

International Conference on Knowledge Discovery and Data Mining (KDD-98), New York City, New York, USA, August 27-31, 1998, Rakesh

Agrawal, Paul E. Stolorz, and Gregory Piatetsky-Shapiro (Eds.). AAAI Press, 73ś79. http://www.aaai.org/Library/KDD/1998/kdd98-

011.php

[44] Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, and Satish Chandra. 2019. Neural query expansion for code search.

In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, MAPL@PLDI 2019,

Phoenix, AZ, USA, June 22, 2019, Tim Mattson, Abdullah Muzahid, and Armando Solar-Lezama (Eds.). ACM, 29ś37.

[45] Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude, and Chengyuan Zhao. 2021. API-Related Developer

Information Needs in Stack Overlow. IEEE Transactions on Software Engineering (2021).

[46] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu. 2019. Generating query-

speciic class API summaries. In Proceedings of 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, August 26-30, 2019, Tallinn, Estonia. 120ś130.

[47] Shangqing Liu, Xiaofei Xie, Lei Ma, Jing Kai Siow, and Yang Liu. 2021. GraphSearchNet: Enhancing GNNs via Capturing Global

Dependency for Semantic Code Search. CoRR abs/2111.02671 (2021).

[48] Wenjian Liu, Xin Peng, Zhenchang Xing, Junyi Li, Bing Xie, and Wenyun Zhao. 2018. Supporting exploratory code search with

diferencing and visualization. In Proceedings of 25th International Conference on Software Analysis, Evolution and Reengineering, SANER

2018, Campobasso, Italy, March 20-23, 2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE Computer Society,

300ś310.

[49] Jinting Lu, Ying Wei, Xiaobing Sun, Bin Li, Wanzhi Wen, and Cheng Zhou. 2018. Interactive Query Reformulation for Source-Code

Search With Word Relations. IEEE Access 6 (2018), 75660ś75668.

[50] Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan. 2015. Query expansion via WordNet for efective code search. In

Proceedings of 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada,

March 2-6, 2015. IEEE Computer Society, 545ś549.

[51] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. 2008. Source Code Retrieval for Bug Localization Using Latent Dirichlet

Allocation. In Proceedings of 15th Working Conference on Reverse Engineering, WCRE 2008, October 15-18, 2008, Antwerp, Belgium. IEEE

Computer Society, 155ś164.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/MSR52588.2021.00055
https://doi.org/10.1007/s10664-012-9233-9
https://doi.org/10.1109/TSE.2013.24
https://doi.org/10.1016/j.advengsoft.2012.07.001
http://www.aaai.org/Library/KDD/1998/kdd98-011.php
http://www.aaai.org/Library/KDD/1998/kdd98-011.php

26 • Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng

[52] Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. 2015. CodeHow: Efective Code Search

Based on API Understanding and Extended Boolean Model (E). In Proceedings of 30th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. IEEE Computer Society, 260ś270.

[53] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia medica 22, 3 (2012), 276ś282.

[54] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011. Portfolio: inding relevant functions and their

usage. In Proceedings of 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011.

ACM, 111ś120.

[55] Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus, and Andrea De Lucia. 2017. Predicting Query Quality

for Applications of Text Retrieval to Software Engineering Tasks. ACM Trans. Softw. Eng. Methodol. 26, 1 (2017), 3:1ś3:45. https:

//doi.org/10.1145/3078841

[56] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock, and Vijay Shanker. 2013. Automatic Generation of

Natural Language Summaries for Java Classes. In 21st IEEE International Conference on Program Comprehension (ICPC’13). IEEE, San

Francisco, USA, 23ś32.

[57] Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. 2016. Query Expansion Based on Crowd Knowledge for Code Search. IEEE

Trans. Serv. Comput. 9, 5 (2016), 771ś783.

[58] Rahul Pandita, Kunal Taneja, Laurie A. Williams, and Teresa Tung. 2016. ICON: Inferring Temporal Constraints from Natural Language

API Descriptions. In Proceedings of 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC,

USA, October 2-7, 2016. IEEE Computer Society, 378ś388. https://doi.org/10.1109/ICSME.2016.59

[59] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2021. JITLine: A Simpler, Better, Faster, Finer-grained Just-In-Time Defect

Prediction. In Proceedings of 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May

17-19, 2021. IEEE, 369ś379. https://doi.org/10.1109/MSR52588.2021.00049

[60] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2022. DeepLineDP: Towards a Deep Learning Approach for Line-Level Defect

Prediction. IEEE Trans. Software Eng. (2022).

[61] Chanathip Pornprasit, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Michael Fu, and Patanamon Thongtanunam. 2021. PyExplainer:

Explaining the Predictions of Just-In-Time Defect Models. In Proceedings of 36th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE, 407ś418. https://doi.org/10.1109/ASE51524.2021.9678763

[62] Mohammad Masudur Rahman, Chanchal K. Roy, and David Lo. 2019. Automatic query reformulation for code search using crowdsourced

knowledge. Empir. Softw. Eng. 24, 4 (2019), 1869ś1924.

[63] Dilini Rajapaksha, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Christoph Bergmeir, John Grundy, and Wray L. Buntine. 2022.

SQAPlanner: Generating Data-Informed Software Quality Improvement Plans. IEEE Trans. Software Eng. 48, 8 (2022), 2814ś2835.

https://doi.org/10.1109/TSE.2021.3070559

[64] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.).

Association for Computational Linguistics, 3980ś3990.

[65] Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2011. Using structural and textual information to capture feature coupling in

object-oriented software. Empir. Softw. Eng. 16, 6 (2011), 773ś811. https://doi.org/10.1007/s10664-011-9159-7

[66] Knut Magne Risvik, Tomasz Mikolajewski, and Peter Boros. 2003. Query Segmentation for Web Search. In Proceedings of the Twelfth

International World Wide Web Conference - Posters, WWW 2003, Budapest, Hungary, May 20-24, 2003, Irwin King and Tamás Máray (Eds.).

http://www2003.org/cdrom/papers/poster/p052/xhtml/querysegmentation.html

[67] Stephen E. Robertson and Steve Walker. 1994. Some Simple Efective Approximations to the 2-Poisson Model for Probabilistic Weighted

Retrieval. In Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval.

Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), W. Bruce Croft and C. J. van Rijsbergen (Eds.). ACM/Springer, 232ś241.

[68] Amanda Ross and Victor L Willson. 2017. One-sample T-test. In Basic and advanced statistical tests. Springer, 9ś12.

[69] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. 2018. Retrieval on source code: a neural code

search. In Proceedings of 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, MAPL@PLDI

2018, Philadelphia, PA, USA, June 18-22, 2018. ACM, 31ś41.

[70] Gerard Salton and Chris Buckley. 1988. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag. 24, 5 (1988),

513ś523.

[71] Janice Singer, Timothy C. Lethbridge, Norman G. Vinson, and Nicolas Anquetil. 1997. An examination of software engineering work

practices. In Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative Research, November 10-13, 1997, Toronto,

Ontario, Canada. IBM, 21.

[72] Ravindra Singh and Naurang Singh Mangat. 2013. Elements of Survey Sampling. Vol. 15. Springer Science & Business Media.

[73] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker. 2010. Towards Automatically Generating

Summary Comments for Java Methods. In 25th IEEE/ACM International Conference on Automated Software Engineering (ASE’10). Antwerp,

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3078841
https://doi.org/10.1145/3078841
https://doi.org/10.1109/ICSME.2016.59
https://doi.org/10.1109/MSR52588.2021.00049
https://doi.org/10.1109/ASE51524.2021.9678763
https://doi.org/10.1109/TSE.2021.3070559
https://doi.org/10.1007/s10664-011-9159-7
http://www2003.org/cdrom/papers/poster/p052/xhtml/querysegmentation.html

XCoS: Explainable Code Search based onuery Scoping and Knowledge Graph • 27

Belgium, 43ś52.

[74] Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, and John Grundy. 2021. Actionable Analytics: Stop Telling Me What It Is; Please Tell

Me What To Do. IEEE Softw. 38, 4 (2021), 115ś120. https://doi.org/10.1109/MS.2021.3072088

[75] Chakkrit Kla Tantithamthavorn and Jirayus Jiarpakdee. 2021. Explainable AI for Software Engineering. In Proceedings of 36th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE, 1ś2. https:

//doi.org/10.1109/ASE51524.2021.9678580

[76] Christoph Treude, Ohad Barzilay, and Margaret-Anne D. Storey. 2011. How do programmers ask and answer questions on the web?. In

Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM,

804ś807.

[77] Christoph Treude, Martin P Robillard, and Barthélémy Dagenais. 2014. Extracting development tasks to navigate software documentation.

IEEE Transactions on Software Engineering 41, 6 (2014), 565ś581.

[78] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal Attention Network Learning

for Semantic Source Code Retrieval. In Proceedings of 34th IEEE/ACM International Conference on Automated Software Engineering, ASE

2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 13ś25.

[79] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang. 2019. A learning-based approach for

automatic construction of domain glossary from source code and documentation. In Proceedings of the ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,

August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 97ś108.

[80] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. Improving feature location practice with multi-faceted interactive

exploration. In Proceedings of 35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,

David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer Society, 762ś771.

[81] Shaowei Wang and David Lo. 2014. Version history, similar report, and structure: putting them together for improved bug localization.

In Proceedings of 22nd International Conference on Program Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014, Chanchal K. Roy,

Andrew Begel, and Leon Moonen (Eds.). ACM, 53ś63. https://doi.org/10.1145/2597008.2597148

[82] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Hideaki Hata, and Kenichi Matsumoto. 2022.

Predicting Defective Lines Using a Model-Agnostic Technique. IEEE Trans. Software Eng. 48, 5 (2022), 1480ś1496. https://doi.org/10.

1109/TSE.2020.3023177

[83] Bernard L Welch. 1947. The generalization of Student’s problem when several diferent population variances are involved. Biometrika

34, 1/2 (1947), 28ś35.

[84] Xin Ye, Razvan C. Bunescu, and Chang Liu. 2016. Mapping Bug Reports to Relevant Files: A Ranking Model, a Fine-Grained Benchmark,

and Feature Evaluation. IEEE Trans. Software Eng. 42, 4 (2016), 379ś402. https://doi.org/10.1109/TSE.2015.2479232

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/MS.2021.3072088
https://doi.org/10.1109/ASE51524.2021.9678580
https://doi.org/10.1109/ASE51524.2021.9678580
https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1109/TSE.2020.3023177
https://doi.org/10.1109/TSE.2020.3023177
https://doi.org/10.1109/TSE.2015.2479232

	Abstract
	1 Introduction
	2 Motivating Example
	3 Developer Survey
	4 Approach
	4.1 Overview
	4.2 Skeleton Knowledge Extraction
	4.3 Extended Knowledge Extraction
	4.4 Query Scoping and Matching
	4.5 Explanation Generation

	5 UI Design
	6 Evaluation
	6.1 Quality of Key Steps (RQ1)
	6.2 Effectiveness for Generating Explanations (RQ2)
	6.3 Usefulness of XCoS (RQ3)
	6.4 Threats to Validity

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

