
Evaluating Large Language Models in Class-Level Code
Generation

Xueying Du∗, Mingwei Liu∗†, Kaixin Wang∗, Hanlin Wang∗, Junwei Liu∗, Yixuan Chen∗, Jiayi Feng∗,
Chaofeng Sha∗, Xin Peng∗, Yiling Lou∗†

Fudan University
Shanghai, China

ABSTRACT
Recently, many large language models (LLMs) have been proposed,
showing advanced proficiency in code generation. Meanwhile,
many efforts have been dedicated to evaluating LLMs on code gener-
ation benchmarks such as HumanEval. Although being very helpful
for comparing different LLMs, existing evaluation focuses on a sim-
ple code generation scenario (i.e., function-level or statement-level
code generation), which mainly asks LLMs to generate one single
code unit (e.g., a function or a statement) for the given natural
language description. Such evaluation focuses on generating inde-
pendent and often small-scale code units, thus leaving it unclear
how LLMs perform in real-world software development scenarios.

To fill this knowledge gap, we make the first attempt to evaluate
LLMs in a more challenging code generation scenario, i.e., class-
level code generation. Compared with existing code generation
benchmarks, it better reflects real-world software development
scenarios due to it comprising broader contextual dependencies and
multiple, interdependent units of code. We first manually construct
the first class-level code generation benchmark ClassEval of 100
class-level Python code generation tasks with approximately 500
person-hours. Based on the new benchmark ClassEval, we then
perform the first study of 11 state-of-the-art LLMs on class-level
code generation. Based on our results, we find that all LLMs perform
muchworse on class-level code generation compared to themethod-
level. While GPT models still dominate other LLMs on class-level
code generation, the performance rankings of other models on
method-level code generation no longer holds for class-level code
generation. Besides, most models (except GPT models) perform
better when generating the class method by method; and they
have the limited ability of generating dependent code. Based on
our findings, we call for software engineering (SE) researchers’
expertise to build more LLM benchmarks based on practical and
complicated software development scenarios.

∗X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha, X. Peng and Y.
Lou are with the School of Computer Science and Shanghai Key Laboratory of Data
Science, Fudan University, China.
†Corresponding authors (liumingwei@fudan.edu.cn; yilinglou@fudan.edu.cn)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639219

CCS CONCEPTS
• Software and its engineering→ Software evolution;Automatic
programming.

KEYWORDS
Class-level Code Generation, Large Language Model, Benchmark

ACM Reference Format:
Xueying Du∗, Mingwei Liu∗†, Kaixin Wang∗, Hanlin Wang∗, Junwei Liu∗,
Yixuan Chen∗, Jiayi Feng∗, Chaofeng Sha∗, Xin Peng∗, Yiling Lou. 2024.
Evaluating Large Language Models in Class-Level Code Generation. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639219

1 INTRODUCTION
Code generation techniques automatically generate code snippets
for the given natural language description, which can be leveraged
to improve development productivity and have been extensively
studied in literature [38, 39, 60]. The recent advance in large lan-
guage models (LLMs) has brought significant advancements in
the code generation domain. To date, researchers have proposed
various LLMs [10, 13, 19, 27, 30, 42, 49, 53, 65, 75, 76] (such as GPT-
4 [53], WizardCoder [49], and Instruct-CodeGen [10]) by training
large models with over billions of parameters on massive general
or code-specific corpora and instructions.

To fully understand the code generation capability of emerging
LLMs, many efforts have been dedicated to evaluating LLMs on au-
tomatically or manually constructed code generation benchmarks.
To date, many code generation benchmarks have been proposed,
such as HumanEval [21] and MBPP [15]. Although being very
helpful for people to understand and compare the performance of
different LLMs, existing evaluation actually focuses on a rather sim-
ple code generation scenario, i.e., function-level or statement-level
code generation. They mainly ask LLMs to generate one single
code unit (e.g., a function or a statement) for the given natural
language descriptions in a standalone way, which inherently have
two limitations in evaluating LLMs in code generation. First, such
evaluation tends to focus on generating code of short length, e.g., each
task in the most widely-used benchmark HumanEval only involves
generating code of 11.5 lines and 24.4 tokens on average. Such a
number of generated tokens is far within the maximum number of
tokens in recent LLMs (e.g., 2,048 for WizardCoder [49]). Therefore,
it remains unclear about the further potential of LLMs in generat-
ing long code snippets. Second, such evaluation mainly focuses on
generating one single code unit, e.g., one function or one statement.
However, as shown in previous work [67], only 30% of methods
are independent to other code contexts in the open-source projects.

https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Du, et al.

Therefore, it remains unclear how LLMs perform in real-world
software development scenarios, i.e., generating a compound code
unit of multiple methods1 which are dependent on each other (e.g.,
invoking each other or accessing the same variable).

Benchmark ClassEval. To fill this knowledge gap, this work
makes the first attempt to evaluate LLMs in a more challenging
code generation scenario, i.e., class-level code generation. In par-
ticular, we evaluate the model capability of generating a class of
multiple interdependent methods for the given natural language
description. A class-level code generation benchmark stands out
from more complex function-level benchmarks in two key ways:
(1) ClassEval could not only assess correctness of generated code
but also examines how well the model could incorporate contextual
dependencies when generating a compound code unit; (2) ClassE-
val allows for further exploration different generation strategies
(e.g., incremental or compositional method-by-method strategies
to generate the whole class).

Wemanually construct the first class-level code generation bench-
mark ClassEval in a rigorous and time-intensive way, which takes
approximately 500 person-hours to construct 100 class-level Python
code generation tasks. Overall, ClassEval covers a wide range of
topics in practical software development (e.g., management sys-
tems and game development). Each task is constructed with a test
suite of high testing sufficiency (e.g., 98.2% and 99.7% branch-level
or statement-level coverage) so as to facilitate reliable correctness
checking of the generated code; furthermore, each task is designed
to generate a class of multiple methods with diverse dependencies
(e.g., field, method, and library dependencies).

Empirical study. Based on the new benchmark ClassEval, we
then perform the first study to evaluate LLMs on class-level code
generation. In particular, our experiments include 11 state-of-the-
art LLMs, which are diverse in model sizes, foundation models,
sources, or domains. For each studied LLM, we explore its perfor-
mance in generating class-level code with three different generation
strategies, i.e., holistic generation (generating the entire class all at
once), incremental generation and compositional generation (gener-
ating the class method by method). For each generated code snippet,
wemeasure its correctness with the widely-usedmetric Pass@k [21].
In addition, we also investigate the model ability of generating de-
pendent code and analyze bad cases of incorrect classes.

Main findings and implications. Based on our results, we
have the following main findings. First, we find that all existing
LLMs show much worse performance on class-level code gener-
ation compared to on standalone method-level code generation
benchmarks like HumanEval; and the method-level coding ability
cannot equivalently reflect the class-level coding ability among
LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dom-
inate superior than other LLMs on class-level code generation,
and the second-tier models includes Instruct-StarCoder, Instruct-
CodeGen, and WizardCoder with very similar performance. Third,
we find that generating the entire class all at once (i.e., holistic
generation strategy) is the best generation strategy only for GPT-4
and GPT-3.5, while step-by-step generation (i.e., incremental and
compositional) is better strategies for the other models with limited
1As we currently focus on Python, we distinguish concepts “method” and “function”: a
method is associated to an object and requires an object instance to be invoked, while
a function is an independent code block that can be called from anywhere.

ability of understanding long instructions and utilizing the middle
information. Lastly, we find the limited model ability of generating
method-dependent code and discuss the frequent error types in
generated classes. Based on our findings, we summarize several
practical implications, especially the appeal for SE researchers’ ex-
pertise to build more LLM benchmarks of practical and complicated
software development scenarios.

In summary, this paper makes the following contributions:

• The first benchmark ClassEval for class-level code genera-
tion, which is manually constructed with 500 person-hours and
publicly available both on Github [1] and Hugging Face [2];

• The first study to evaluate 11 representative LLMs on class-
level code generation with three different generation strategies;

• Findings and implications on analyzing the model capability
and future directions for LLMs on class-level code generation.

2 BACKGROUND
Wefirst introduce the recent LLMs for code generation in Section 2.1
and then motivate our study by revisiting existing code generation
benchmarks in Section 2.2.

2.1 Large Language Models for Code Generation
Code generation is a task focusing on generating code snippets for
the given natural language description, which has been extensively
studied in recent literature [38, 39, 60]. General LLMs, which are
large models with more than billions of parameters trained on gen-
eral textual/code corpora and instructions, demonstrate remarkable
capabilities not only in general NLP tasks [20] but also promising
performance in code generation. For example, GPT-4 achieves the
highest pass rate on HumanEval benchmark [49]. There has re-
cently been an increasing trend to evaluate the code generation
capacity even for general LLMs [21, 56]. Code LLMs, which are
large models mainly trained with massive code-specific corpora
and instructions, often have better capability than general LLMs
in code generation tasks [24, 49, 70]. Existing code LLMs are de-
signed with different training objectives. For example, some are
using next-token prediction, while some code LLMs are trained
with “filling-in-the middle” (FIM) capability, i.e., infilling the miss-
ing portion based on the context. To date, a large number of code
LLMs have been proposed [10, 11, 49].

2.2 Existing Benchmarks for Code Generation
Code generation benchmarks typically include various coding tasks
where a natural language description serves as input, and the cor-
responding code serves as the ground truth output. Evaluation
metrics such as passing rate (Pass@k [21]) are commonly used to
assess the correctness of the generated code.

To date, many code generation benchmarks have been con-
structed via automated or manual manners. In this study, we revisit
widely-used code generation benchmarks from the three following
sources: (i) Top-10 popular datasets with the highest download
volumes from Huggingface code generation datasets [3], (ii) bench-
marks associated with recent LLM papers (released between June
2021 and June 2023), and (iii) enhanced benchmarks such as Hu-
manEval+ [44] and Multi-HumanEval [14]. Table 1 provides an
overview of the 13 distinct benchmarks collected from the three

Evaluating Large Language Models in Class-Level Code Generation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Existing Benchmarks for Code Generation
Benchmark Time Language Manual/Automated Source Granularity #Tasks #Tests #LOC #Tokens Input Information
Concode [35] 2018 Java Automated Github Function-level 2,000 - - 26.3 NL
CoNaLA [66] 2018 Python Automated Stack Overflow Statement-level 500 - 1 - NL
APPS [32] 2021 Python Automated Contest Sites Competitive 5,000 13.2 21.4 58 NL + Example Inputs/Outputs
HumanEval [21] 2021 Python Manual - Function-level 164 7.7 11.5 24.4 NL + Function Signature + Example Inputs/Outputs
MBPP [15] 2021 Python Manual - Function-level 974 3.0 6.8 24.2 NL
math-qa [15] 2021 Python Manual Math Study Sites Statement-level 2,985 - 7.6 24.6 NL
Multi-HumanEval [14] 2022 Multilingual Manual - Function-level 164 7.7 11.5 24.4 NL + Function Signature + Example Inputs/Outputs
MBXP [14] 2022 Multilingual Manual - Function-level 974 3.0 6.8 24.2 NL
multi-math-qa [14] 2022 Multilingual Manual Math Study Sites Statement-level 2,985 - 7.6 24.6 NL
CodeContests [43] 2022 Python, C++ Automated Contest Sites Competitive 165 203.7 59.8 184.8 NL + Example Inputs/Outputs
DS-1000 [40] 2022 Python Automated Stack Overflow Statement-level 1,000 1.6 3.8 12.8 NL
HumanEval+ [44] 2023 Python Manual - Function-level 164 774.8 11.5 24.4 NL + Function Signature + Example Inputs/Outputs
CoderEval [67] 2023 Python, Java Automated Github Function-level 230 - 30 108.2 NL + Function Signature
ClassEval 2023 Python Manual - Class-level 100 33.1 45.7 123.7 Class Skeleton

sources, including their release time, construction method (i.e.,man-
ually written or automatically collected from public code corpus
or competitions), benchmark size (#Tasks), target code granularity,
target code language, code scale (#LOC: average lines of code, #To-
kens: average number of tokens), average number of test cases per
task (#Tests), and detailed input information (NL indicates natural
language description information). We also present our constructed
benchmark ClassEval in the last row for comparison.

Based on Table 1, we find that existing benchmarks actu-
ally shape a rather simple code generation scenario, which
mainly evaluate the capability of LLMs in generating one
single code unit (a function or a statement) in a rather stan-
dalone way. In particular, existing benchmarks typically focus
on function-level or statement-level code generation tasks (Col-
umn “Granularity”) and rarely include additional code contexts in
the input (Column “Input Information”), which assumes that the
code to be generated is an independent unit and thus leads to two
limitations in evaluating LLMs.

First, existing benchmarks mainly focus on short code genera-
tion tasks, like generating one function or one statement. These
tasks typically involve limited number of lines (e.g., 1 to 30) and
tokens (e.g., 4.6 to 108.2), which may not fully explore the capabili-
ties of recent LLMs that can handle much longer sequences, such
as WizardCoder with 2,048 tokens. Thus, the potential of LLMs in
generating longer code snippets remains unclear. Second, existing
benchmarks mainly focus on generating independent code units
without considering other code contexts. For instance, as shown in
Figure 1, benchmarks like MBPP and HumanEval only provide lim-
ited information as input, such as natural language descriptions or
function signatures with example inputs and outputs. However, in
real-world scenarios, methods often depend on each other or share
variables. Previous work [67] indicates that only 30% of methods in
open-source projects are independent of other code contexts.While
some recent code completion efforts [31, 74] focus on handling
longer code contexts with more dependencies, the generated out-
put still remains at the function or statement level. Therefore, it
remains unclear how LLMs perform in generating a compound
code unit of multiple methods which are dependent on each other
(e.g., invoking each other or accessing the same variable).

Our Motivation. Existing benchmarks cannot facilitate the
model evaluation on more complicated code generation tasks, such
as generating longer and compound code units of multiple inter-
dependent methods. To address this gap, we manually construct
the first class-level code generation benchmark ClassEval and per-
form the first study to evaluate LLMs on class-level code generation

from typing import List Import Statements
 def has_close_elements(numbers: List[float], threshold: float) -> bool:

 """ Check if in given list of numbers, are any two numbers closer to each other than
 given threshold.
 >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
 False
 >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
 True"""

Function
Signature

Functional Description

Example
Input/Output

Functional Description
"Write a python function to find the first repeated character in a given string."

HumanEval

MBPP

Figure 1: Examples in Existing Benchmarks

tasks, which ask LLMs to generate a class of multiple interdepen-
dent methods based on a given natural language description.

3 NEW BENCHMARK CLASSEVAL
In this section, we introduce our new benchmark ClassEval. We
present the benchmark format (Section 3.1), the construction proce-
dure (Section 3.2), and the benchmark characteristics (Section 3.3).

3.1 Benchmark Format
Each coding task in ClassEval comprises an input description for the
target class (i.e., the class to be generated), a test suite for verifying
the correctness of the generated code, and a canonical solution that
acts as a reference implementation of the target class.

"""This is a class to simulate a vending machine, including adding products, inserting
coins, purchasing products, viewing balance, replenishing product inventory, and
displaying product information. """

"""

from datetime import datetime Import Statements
class VendingMachine: Class Name

 def __init__(self):
 """
 Initializes the vending machine's inventory and balance.
 """
 self.inventory= []
 self. balance= {}

Class Description

Class Constructor

 def purchase_item(self, item_name):
 """ Purchases a product from the vending machine and returns the balance after the
purchase.
 :param item_name: str, the name of the product to be purchased, which should be in
the vending machine.
 :return: If successful, returns the balance of the vending machine after the product is
purchased, float, if the product is out of stock,returns False.
 >>> vendingMachine.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}
 >>> vendingMachine.balance = 1.25
 >>> vendingMachine.purchase_item('Coke')
 0.0
 >>> vendingMachine.inventory
 {'Coke': {'price': 1.25, 'quantity': 9}} """
 def restock_item(self, item_name, quantity):
 """

Replenishes the inventory of a product already in the vending machine.
 :param item_name: The name of the product to be replenished, str, which should be
in the vending machine.
 :param quantity: The quantity of the product to be replenished, int, which is greater
than 0.
 :return: If the product is already in the vending machine, returns True, otherwise,
returns False.
 >>> vendingMachine.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}
 >>> vendingMachine.restock_item('Coke', 10)
 True
 >>> vendingMachine.inventory
 {'Coke': {'price': 1.25, 'quantity': 20}}
 """

 Functional Description

 Parameter/Return
Description

Example Input/Output

Parameter/Return Description

Example Input/Output

 ...

Method Signature

Method Signature
 Functional Description

Figure 2: An Example of Class Skeleton in ClassEval

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Du, et al.

Typically, LLMs generate code snippets based on input descrip-
tions and the correctness is verified with the provided test suite.
The generated code must conform to a consistent interface (e.g., the
types of input parameters and return values) specified in the test
suite for valid execution. For example, the benchmark HumanEval
specifies the signature of the target function (Figure 1) to ensure
that the generated bodies are validly checked by the given test
suite. To achieve this, we define a class skeleton format for the
input descriptions in our coding tasks. The class skeleton, inspired
by contract programming [50], serves as a structured blueprint
for the target class, containing both class-level information and
method-level information. The class skeleton describes the func-
tionalities of each method [64] and provides formal and precise
specifications [45] for code generation by outlining expected behav-
iors, pre-conditions, and post-conditions. LLMs generate class-level
code that aligns with the given test suite based on the class skeleton.
The detailed definitions of elements in the class skeleton are in Ta-
ble 2. Column “Mand.” indicates whether the element is mandatory
in the class skeleton. Figure 2 further illustrates an example of a
class skeleton.

3.2 Benchmark Construction Procedure
Figure 3 illustrates the procedure of constructing ClassEval. We
follow four steps to create ClassEval: (i) select suitable coding tasks
using different strategies (Section 3.2.1); (ii) construct class skele-
tons based on the principles of contract programming [50] and test-
driven development [18] (Section 3.2.2); (iii) create the test suite
for each class skeleton (Section 3.2.3); and (iv) write the canonical
solution for each coding task (Section 3.2.4). The constructed class
skeletons, test suites, and canonical solutions form our class-level
code generation benchmark ClassEval.

Task Selection

 Revisiting Existing
benchmarks

 Exploring PyPI
Topics

Brainstorming

100
Tasks

Test Construction
Class Skeleton
Construction

Skeleton

Class
s

Canonical Solution
Construction

Class-level Tests

Benchmark
Construction
Procedure

Class
Constructor

Method-level Tests

Class Skeletons

 Test
CasesMethod Reture Value

Method Parameter

Method Functionality

Dependency

ClassEval
Benchmark

Figure 3: Overview of ClassEval Construction Process

To avoid the coding tasks being seen by LLMs during their train-
ing, our benchmark is constructed completely manually, so as to
mitigate potential data leakages from existing code sources. Our
manual construction involves a time-intensive process with approx-
imately 500 person-hours on constructing 100 class-level coding
tasks. Due to the significant manual efforts required, we currently
stop the benchmark scale to this size. Moreover, following the trend
of most existing benchmarks [15, 21], our benchmark primarily
focuses on Python given its prevalence [57].

3.2.1 Task Selection. In this step, we design class-level coding
tasks (i.e., a unique class description for each task as defined in
Table 2) for our benchmark.

Inclusion Sources.We design our coding tasks to cover diverse
and real-world development topics, based on the following three
sources. (i)Revisiting Existing Benchmarks.We refer to well estab-
lished benchmarks like HumanEval and MBPP (Table 1) to include

prevalent and common topics, including Mathematical Operation
(e.g., area calculations) and Data Formatting (e.g., binary conver-
sions and time conversions). (ii) Exploring PyPI Topics.Wemanually
explore the Python Package Index (PyPI) [7], which hosts a vast
repository of Python software packages and provides a diverse
range of potential task topics. These include File Handling (e.g.,
JSON file processors and CSV file processors) and foundational
Natural Language Processing tasks (e.g., stop word removal). (iii)
Brainstorming. By reviewing the software development projects on
GitHub repositories and a further brainstorming session, we col-
lect more tasks that origin from real-world development scenarios.
These tasks are intricate enough to include rich class dependen-
cies, but not excessively complex to exceed the model’s capabilities,
including Management Systems (e.g., student registration system
and movie booking system), Game Development (e.g., Minesweeper
game and Gomoku game), and Database Operations (e.g., library
database operations and SQL query generation).

Exclusion Criteria. Our benchmark focuses on coding tasks
that can be implemented within one single class. Therefore, we
exclude tasks that have complicated dependencies on the execution
environment, including those related to (i) Network Programming,
(ii) Graphical User Interface Design, (iii) Data Visualization, (iv)
System Programming, and (v) Concurrent Programming. These
tasks often require interactions with other classes or cannot be
easily verified with assertion statements in unit tests.

In this way, we obtain a list of 100 diverse class-level coding tasks,
covering a wide spectrum of topics, such as Game Development,
File Handling, and Management Systems. Table 3 presents the topic
distribution of our tasks.

3.2.2 Class Skeleton Construction. During this step, we manually
construct the class skeleton for each coding task, involving 5 partici-
pants with an average of 3 years of Python development experience.
Among these participants, one individual serves as the lead, respon-
sible for final review and arbitration, while the remaining four are
divided into two pairs. Each pair is tasked with creating 50 class
skeletons, with one member responsible for writing the class skele-
ton and the other for double-checking it. In case of disagreements,
the lead facilitates discussions to reach a consensus on the class
skeleton, adhering to the design principles. This procedure also
served as an iterative refinement process for our class skeleton
design principles. Initially, we operated with a rudimentary set
of principles, only outlining the fundamental elements of a class
skeleton and a foundational principle on dependency. As more
instances emerged in the construction process, coupled with dis-
cussions to reconcile differences and feedback from subsequent
test and canonical solution construction phases, our class skeleton
design principles progressively refined and enhanced. Ultimately,
our comprehensive design principles are as follows.

Principle 1 (dependency): Each class skeleton should contain
methods with diverse dependencies, i.e., the methods are depen-
dent to other code contexts within the class. Previous work [67]
has shown that the majority of methods (over 70%) are dependent
on other code contexts in the project. Unlike previous benchmarks
that focus on standalone function-level code generation, our class-
level benchmark aims to capture the real-world scenario where

Evaluating Large Language Models in Class-Level Code Generation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Elements Defined in Class Skeleton
Elements Mand. Definition

Class
Level
Info.

Class Name ✓ The name of the target class
Class Description ✓ The description of the overall functionality of the target class
Import Statements ✕ Indicating the external libraries or modules necessary for implementing the target class
Class Constructor ✕ The initial method automatically invoked to initialize the attributes once the class is instantiated

Method
Contract
Design

Method Signature ✓ Defining the target method name, input parameters, and return type
Functional Description ✓ Natural language descriptions on the functionality of each method
Parameter/Return Description ✕ Textual descriptions on expected inputs (e.g., parameter types) and outputs (e.g., return values) for each method
Example Input/Output ✕ Concrete examples of input values and corresponding output values on executing the target method

Table 3: Topic Type Definitions in ClassEval
Topic Description Examples #Tasks

Management Systems Operational functionalities in common software management systems projects Student Registration System, Movie Booking System 27
Data Formatting Processing data according to specific rules or patterns Text-to-number Conversion, URL Format Validation 26

Mathematical Operations Algorithms for mathematical and statistical problems Basic Arithmetic Operations, Area Calculation 16
Game Development Algorithms for game functionalities, including mechanics and state management Minesweeper Game, Gomoku Game 10

File Handling Common file operations including reading, writing, and simple processing data in files CSV File Processor, JSON File Processor 9
Database Operations Implementation of common database operations Library Database Operation, SQL Query Generator 7

Natural Language Processing Techniques for processing and analyzing text data Stop Word Removal, Longest Word Identification 5

methods often have dependencies with other code contexts. To dis-
tinguish our benchmark from function-level ones, we deliberately
avoid tasks that generate a class with independent methods, which
would essentially be a collection of individual method-level coding
tasks. Instead, class skeletons in our benchmark includes methods
with diverse dependencies, including (i) Library Dependency, where
methods rely on external libraries; (ii) Field Dependency, where
methods depend on class instance variables (fields); (iii) Method
Dependency, where methods rely on other methods within the same
class; and (iv) Standalone, where methods function independently
without dependencies on fields, methods, or external libraries.

Principle 2 (class constructor): The class constructor (if has)
in each class skeleton should define the class fields and their default
values. The constructor also includes natural language descriptions
of the class fields to provide a clear understanding of their meanings.
Importantly, the constructor does not make calls to other methods
within the class to preserve the independence and self-contained
nature of the class initialization process.

Principle 3 (method functionality): We avoid including com-
plex functionalities like closing database connections, which are
not easily testable and verifiable. Additionally, we enhance code
reusability and maintainability by breaking down common and
repetitive functionalities into separate methods. This principle fos-
ters potential interdependencies between methods, simulating a
more interconnected and practical coding scenario.

Principle 4 (method parameter): The method parameters are
limited to primitive data types, avoiding object-level parameters or
loosely defined arguments like **kwargs. This principle not only
enhances clarity in method invocation but also facilitates testing,
making it easier to create unit tests and verify the functionality of
individual methods in isolation.

Principle 5 (method return value):Methods should include
return values whenever possible for testing. For indicating success
or failure, they use Boolean return types for standardization instead
of custom strings. Additionally, method designs may encompass
evaluative conditions for input parameters and include exception
handling mechanisms. Detailed specifications of exception types,
message content, and triggering circumstances are provided to
ensure comprehensive testing and validation of exception handling.

Each constructed class skeleton would contain mandatory ele-
ments (i.e., the class description, the class name, the method sig-
nature, and the functional description) and optional elements (i.e.,

import statements, class constructor, parameter/return descriptions
and the example input/output).

3.2.3 Test Construction. In this step, we manually construct a test
suite for each coding task based on its class skeleton. The partic-
ipants who were responsible for creating the class skeleton now
take on the task of writing the corresponding test suite. Similarly,
one participant focuses on writing the unit test cases, while the
other ensures the quality and correctness of the test cases.

The methods in each class skeleton are designed to have mul-
tiple dependent relationships, as mentioned in Principle 1 in Sec-
tion 3.2.2. Therefore, participants are required to construct test
cases at two levels: method-level tests and class-level tests, so as to
fully test the correctness of the implemented methods when they
are invoked individually or together. Method-level tests primarily
check the correctness of each method under test by independently
invoking it without invoking any other methods in the class. On
the other hand, class-level tests mainly check the correctness of mul-
tiple methods under test by invoking them sequentially together.
Method-level tests ensure that the correctness of each method un-
der test is individually checked without being impacted by the
incorrect implementation of other methods, while class-level tests
evaluate the overall correctness of the class by considering its in-
teractions. Figure 4 provides two examples of both method-level
and class-level test cases constructed for the class skeleton in Fig-
ure 2. Additionally, we include examples of test cases from existing
benchmarks HumanEval and MBPP to highlight the differences.
The function-level tests in existing benchmarks are comparable
to the method-level tests in ClassEval, but the major difference
is that function-level tests in existing benchmarks only check the
return values of the function under test while our method-level
tests further check the fields of the class. As shown in Figure 4,
when testing the purchase_item method, the method-level test in
ClassEval not only verifies the return value but also evaluates the
operations performed on the inventory field. Moreover, existing
benchmarks lack class-level tests since they primarily focus on
single-function generation.

We then introduce the main principles of constructing method-
level tests and class-level tests, respectively. For method-level tests,
participants are asked to create at least five test cases to cover
diverse scenarios of each method under test. For class-level tests,
participants are required to construct test caseswith different combi-
nations of methods under test, ensuring that eachmethod is invoked

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Du, et al.

at least once in the class-level tests. To simplify test construction,
participants are required to use the existing unittest framework [8],
which provides diverse assertion APIs and a set of Test Fixtures (e.g.,
setUp and tearDown methods) for preparation and cleanup tasks
before and after test execution. Additionally, all constructed test
cases are limited to a five-second running time to prevent potential
infinite loops in the generated code.

3.2.4 Canonical Solution Construction. In this step, we manually
write the canonical solution for each coding task based on its con-
structed class skeleton and test cases. Four participants (each with 2
- 4 years of Python development experience) who were not involved
in constructing the class skeletons and test cases are engaged in
this step. Each coding task is assigned to two participants, with
one responsible for writing the canonical solution and the other
for double-checking it. Participants are required to execute the
solutions with test cases to identify and fix any bugs.

3.3 Benchmark Characteristics
In this way, we manually build a new benchmark ClassEval of 100
class-level coding tasks. The detailed characteristics are as follows.

Scale. ClassEval consists of 100 classes and 412 methods. To
facilitate a direct comparison with other code generation bench-
marks, we include the statistical data of ClassEval in Table 1. The
results reveal large differences in lines of code for ClassEval (45.7)
compared to the two most widely used handwritten benchmarks,
HumanEval and MBPP, with multipliers of 4.0 and 6.7 respectively.
Additionally, we perform additional statistics on the average num-
ber of tokens in the entire docstring information (class skeleton) in
ClassEval (259.3), surpassing HumanEval (67.7) and MBPP (14.5) by
a factor of 3.8 and 17.9 respectively. These results demonstrate that
the class-level code generation task in ClassEval presents higher
complexities, involving longer code generation, as well as more
detailed and sophisticated docstring information.

Test Sufficiency. Table 4 provides comprehensive coverage sta-
tistics, encompassing traditional coverage metrics and advanced
mutation testing results for the test cases in our benchmark, com-
pared to HumanEval and MBPP. We collect the statement-level and
branch-level coverage of the test cases on the canonical solution
code using the Python toolkit coverage [4], and gather mutation
testing results using the mutmut [5]. Additionally, we provide the
average number of method-level tests (#Tests/M) and average class-
level tests (#Tests/C). As shown in Table 4, the test cases in ClassEval
not only achieve substantially higher statement-level and branch-
level coverage (both over 98%) compared to HumanEval and MBPP
but also exhibit superior performance in mutation testing (83.7%).
This indicates more extensive and strong code checking for the
generated solutions in our benchmark, which is supported by the
fact that ClassEval also includes a larger number of method-level
and class-level tests on average.

Table 4: Test Coverage and Test Cases Statistics
Benchmark Statement Branch Mutation #Tests/M #Tests/C
HumanEval 98.8% 83.2% 82.3% 7.7 -

MBPP 98.6% 76.4% 72.4% 3.0 -
ClassEval 99.7% 98.2% 83.7% 8.0 33.1

Dependency. ClassEval focuses on class-level code generation
tasks, distinguishing it from previous benchmarks. Table 5 shows

the distribution of dependency levels within methods across ClassE-
val and previous benchmarks, as explained in Section 3.1. Notably,
Library, Field, and Method dependencies are not mutually exclusive,
and some methods may have a combination of Field and Method
dependencies. We classify methods with either Field or Method
dependencies as class-level dependent methods, totaling 314 (76.2%)
within ClassEval. This inclusion makes ClassEval a comprehensive
benchmark, suitable for evaluating LLMs that must account for
intricate class-level interactions and contextual dependencies.

Table 5: Comparative Distribution of Dependency Levels
Dependency MBPP HumanEval ClassEval
Standalone 974 (100%) 157 (95.8%) 58 (14.1%)
Library - 7 (4.2%) 89 (21.7%)
Field - - 269 (65.5%)

Method - - 107 (26.0%)

Overall, in comparison to previousmanually-crafted code genera-
tion benchmarks, ClassEval contains complicated class-level coding
tasks involving larger-scale code snippets, diverse dependencies,
sufficient test cases, and a wider range of topics from practical
software development.

4 EMPIRICAL STUDY
Using ClassEval, we evaluate existing LLMs on class-level code
generation to answer the following research questions.
• RQ1 (Overall Correctness): how do LLMs perform on class-
level code generation?

• RQ2 (Generation Strategies): how do different generation
strategies perform for LLMs on class-level code generation?

• RQ3 (Dependency Generation): how do LLMs perform on
generating code dependent to other contexts during class-level
code generation?

• RQ4 (BadCase Analysis):what are the common errors during
class-level code generation?

Table 6: Studied LLMs
Model Base Model Time Size IF FIM

Code
LLM

Instruct-CodeGen [10] CodeGen-multi [52] 2022.3 16B ✓ ✓
WizardCoder [49] StarCoder [42] 2023.6 15B ✓ ✓

Instruct-StarCoder [11] StarCoder [42] 2023.5 15B ✓ ✓
CodeGeeX [76] - 2023.3 13B ✕ ✕
InCoder [30] Dense [9] 2022.4 6B ✕ ✓
PolyCoder [65] GPT-2 [55] 2022.2 2.7B ✕ ✕
SantaCoder [13] GPT-2 [55] 2023.1 1.1B ✕ ✓

General
LLM

Vicuna [75] LLaMA [59] 2023.3 7B ✓ ✓
ChatGLM [27] GLM [71] 2022.3 6B ✓ ✓
GPT-3.5 [53] - 2022.11 - ✓ ✓
GPT-4 [53] - 2023.3 - ✓ ✓

4.1 Studied LLMs
We select the state-of-the-art LLMs that have been widely studied
in recent code generation work [44, 49]. In particular, we focus on
recent models released since 2022, and we exclude the small models
(with less than 1B parameters) due to their limited efficacy or the
large models (with more than 20B parameters) due to our resource
limits. Table 6 presents the 11 LLMs studied in our experiments
with their releasing time (Column “Time”), model sizes (Column
“Size”), and base models. In addition, we also summarize the training
characteristics of the studied models, including whether the model
has been trained to possess the ability of “filling-in-the-middle”
(FIM) and whether it possesses the instruction-following (IF) ability
via instruction tuning. Both FIM and IF capabilities are essential

Evaluating Large Language Models in Class-Level Code Generation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

class VendingMachineTestPurchaseItem(unittest.TestCase):
 def test_purchase_item (self):
 vm = VendingMachine()
 vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}
 vm.balance = 1.25
 self.assertEqual(vm.purchase_item('Coke'), 0.0)

 self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 9}})
 def test_purchase_item_2(self):
 vm = VendingMachine()
 vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}
 vm.balance = 1.25
 self.assertEqual(vm.purchase_item('Pizza'), False)

 self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 10}})
 ...

 ClassEval Method Test

 def setUp(self) -> None:
 self.vm = VendingMachine()
 self.vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}
 self.vm.balance = 0
 def test_all(self):
 self.assertEqual(vm.insert_coin(1.25), 1.25)
 self.assertEqual(vm.purchase_item('Coke'), 0.0)
 self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 9}})
 self.assertEqual(vm.restock_item('Coke', 10), True)
 self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 19}})
 self.assertEqual(vm.display_items(), 'Coke - $1.25 [19]’)
 ...

 ClassEval Class Test
class VendingMachineTestMain (unittest.TestCase):

[
"assert get_ludic(10) == [1, 2, 3, 5, 7]",
"assert get_ludic(25) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25]", ...

]

MBPP Function Test

Test Fixtures:
setUp

 METADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}
 def check(candidate):
 assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True
 assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
 ...

HumanEval Function Test

Figure 4: Test Cases in Existing Benchmarks and ClassEval

for the class-level code generation tasks. This is due to the require-
ment of these tasks to complete provided Class Skeletons, which
encompass not only class-level information but also the design of all
method contracts. Without FIM or IF capabilities, LLMs may only
complete the final method solely on the final method contract for
next-token prediction, thereby failing to generate a comprehensive
class-level code. As shown in Table 6, our study includes a wide
scope of LLMs that are diverse in multiple dimensions, such as (i)
being both closed-source and open-source, (ii) utilizing different
base models, (iii) covering a range of model sizes from 1B to 16B,
(iv) being trained by both general or code-specific instructions, and
(v) exhibiting different FIM and IF capabilities.

4.2 Studied Generation Strategies
Given a class-level code generation task, we study the performance
of each model with three different generation strategies as follows:

• Holistic Generation: the model is asked to generate the entire
class all at once with the class skeleton as inputs.

• Incremental Generation: the model is asked to generate the
class in a method-by-method manner. Each iteration is based
on the method bodies that have been generated in previous
iterations. The iterative process repeats until all methods in the
class are generated.

• Compositional Generation: the model is asked to generate
the class in a method-by-method manner. Each iteration is
independent, without considering the other generated methods.
All the generated methods are assembled to form the class lastly.

The holistic generation strategy evaluates the model ability of
handling long and complicated coding tasks all at once, while the
incremental and compositional generation strategies focus on step-
by-step class completion. The incremental strategy simulates pro-
gressive software development, where developers incrementally
implement current methods based on existing ones. In constrast,
the compositional strategy simulates real-world programming sce-
narios, where developers implement current methods based on
other available method signatures. The compositional generation
strategy is not influenced by the hints or the misleading informa-
tion since it does not use other method implementation as input.
Notably, both incremental and compositional generation strategies
differ from standalone function-level code generation tasks in ex-
isting benchmarks like HumanEval, since our inputs include the
class-level context such as the class constructor and other method
signatures in the class skeleton.

4.3 Prompt Design
We then describe how we prompt LLMs to solve each class-level
code generation task in ClassEval with each generation strategy.

LLMs with IF ability. Following the common practice of prompt-
ing LLMswith IF ability likeWizardCoder [49], we set their prompts
of two parts: (i) a system prompt as the beginning sentence to initial-
ize the model, and followed by (ii) a task instruction to describe the
goal of the task. Each generation strategy is set with its specific task
instruction, i.e., Instruction-H for holistic generation, Instruction-I
for incremental generation, and Instruction-C for a compositional
generation. The prompt template is as follows.

System Prompt: Provided below is an instruction detailing
a task. Compose a response that aptly fulfills the request.

Instruction-H: Please complete the class ${Class Name} in
the subsequent code. ${Class Skeleton}

Instruction-I: Please complete the method ${Method Name}
within the following class ${Class Name}. ${Class-level Info}
${GeneratedMethodswith Contract Designs} ${TargetMethod
Contract Design}

Instruction-C: Please complete themethod ${MethodName}
within the following class ${Class Name}. ${Class-level Info}
${Other Method Signatures} ${Target Method Contract De-
sign}

LLMs without IF ability. The prompt of these models is the code
context without any instruction: (i) for holistic generation, the
prompt is just the class skeleton; (ii) for incremental generation,
the prompt in each iteration includes the class-level information,
generated methods, and the target method contract design; (iii) for
compositional generation, the prompt for each method includes
the class-level information, other method signatures, and the target
method contract design.

4.4 Metrics
For correctness evaluation, we use the widely-used Pass@k [?]
metric, which calculates the percentage of problems solved based
on 𝑘 code samples generated for each task:

Pass@k = E
Problems

[
1 −

(
𝑛 − 𝑐

𝑘

)
/
(
𝑛

𝑘

)]
(1)

In Eq. 1, 𝑛 represents the total number of samples, 𝑐 denotes the
number of correct samples, and 𝑘 stands for 𝑘 in 𝑝𝑎𝑠𝑠@𝑘 . In partic-
ular, we calculate both class-level Pass@k and method-level Pass@k
in class-level code generation tasks: class-level Pass@k considers
code samples at the class granularity and method-level Pass@k
consider code samples at the method granularity. A class-level code
sample is deemed correct if it passes all the method-level and class-
level test cases; and a method-level sample is deemed correct if
it passes all the method-level test cases. In order to maintain an
acceptable cost and response time in practical settings, we set 𝑛 to

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Du, et al.

five. To address the challenge of high sampling variance, we employ
an unbiased estimator in line with previous work [21].

In addition to code correctness, we further measure the model
capability of generating code that is dependent to the contexts (i.e.,
invoking the other methods declared in the class or assessing the
fields in the class). Such capability is essential in class-level code
generation.s To this end, we design the metricDEP , which measures
the recall of necessary and unique dependencies (Fields/Methods) in
the canonical solution, indicating how many of these dependencies
in the canonical solution are also used in the generated code. In
particular, we consider method dependencies DEP(M) and field
dependencies DEP(F):

DEP(𝑀) =
∑𝑛

𝑖=1𝐺𝑖 (𝑀)∑𝑛
𝑖=1 𝑆𝑖 (𝑀) (2) DEP(𝐹) =

∑𝑛
𝑖=1𝐺𝑖 (𝐹)∑𝑛
𝑖=1 𝑆𝑖 (𝐹)

(3)

𝐺𝑖 (𝑀/𝐹) is the number of generated method/field dependencies in
the 𝑖𝑡ℎ method, and 𝑆𝑖 (𝑀/𝐹) is the number of actual method/field
dependencies in the 𝑖𝑡ℎ method of the canonical solution. Note that
if the same field or method is called multiple times, it’s counted
only once, ensuring that DEP(M) and DEP(F) values always fall
within the range of [0,1].

For each generation strategy, we employ nucleus sampling to
generate 5 samples and calculate Pass@k metrics with 𝑘 = {1, 3, 5}.
In addition, we also use the greedy sampling strategy to generate
one single greedy sample and calculate Pass@1 and DEP metrics.
More sampling details are in Section 4.5.

4.5 Implementation Details
We use the OpenAI API interface, specifically the “gpt-4” and “gpt-
3.5-turbo” model interface [6], in July 2023. For open-source LLMs,
we directly obtain and run their released versions from their official
repositories based on the documentation. The maximum window
length is set to 2,048 tokens for all LLMs, determined by the smallest
maximum window length among the studied LLMs.

In line with recent work [67], we consider two sampling methods
for code generation: (i) nucleus sampling [33], where five solution
code samples are randomly generated for each task with a temper-
ature of 0.2 [21] and default top_p, and (ii) greedy sampling [22],
where only one single solution code sample is generated for each
task using greedy decoding, i.e., setting the “do_sample” hyper-
parameter to false (temperature of 0). During each iteration in
incremental and compositional generation, we obtain the Top-1
generated result for each method. Our experiments are run on a
computational infrastructure comprising eight A800-80G GPUs.

Table 7: Pass@k with Nucleus Sampling on ClassEval
Model Class-level Method-level

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
GPT-4 37.6% 41.3% 42.0% 62.8% 67.4% 68.5%
GPT-3.5 29.6% 34.9% 36.0% 50.4% 59.0% 61.1%

WizardCoder 12.2% 20.0% 23.0% 35.2% 47.1% 51.1%
Instruct-StarCoder 10.2% 12.7% 14.0% 23.1% 26.5% 27.7%

SantaCoder 8.6% 9.9% 10.0% 27.7% 33.0% 34.9%
Instruct-CodeGen 8.2% 12.3% 13.0% 24.9% 34.3% 37.1%

CodeGeeX 7.2% 9.4% 10.0% 21.2% 27.1% 29.5%
InCoder 6.2% 7.6% 8.0% 21.1% 26.5% 29.1%
Vicuna 3.0% 3.6% 4.0% 11.0% 15.8% 18.4%

ChatGLM 1.4% 2.6% 3.0% 8.2% 11.2% 12.4%
PolyCoder 1.4% 2.2% 3.0% 13.2% 17.5% 19.6%

5 RESULTS
5.1 RQ1: Overall Correctness
Figure 5 shows the class-level and method-level Pass@1with greedy
sampling of studied LLMs on ClassEval and HumanEval. Due to
space limits, we only present the best class-level Pass@1 (and cor-
responding method-level Pass@1) for each model among the three
generation strategies. A detailed comparison among three gener-
ation strategies is discussed in Section 5.3. Method-level Pass@1
results onHumanEval are directly adopted from the latest work [49],
and ChatGLM results on HumanEval are absent from existing eval-
uation. Table 7 presents the class-level and method-level Pass@k
with nucleus sampling on ClassEval. Similarly, due to space limits,
we only present results for the generation strategy with the highest
class-level Pass@1. Based on Figure 5 and Table 7, we have the
following observations.

GPT-
4

GPT-
3.5

Ins
tru

ct-
Cod

eG
en

Wiza
rdC

od
er

Ins
tru

ct-
Sta

rCod
er

Sa
nta

Cod
er

Cod
eG

ee
X

InC
od

er

Pol
yC

od
er

Vic
un

a
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pa
ss

@
1

(g
re

ed
y)

37.0

27.0

11.1 11.0 10.0 10.0 9.0
6.0

3.0 2.0

62.5

52.5

25.1

35.5

23.4
27.3

21.6 21.4
14.6

5.6

85.4

68.9

32.3

59.8

34.1

14.6

22.9

15.9

6.1
11.6

ClassEval(Class-level)
ClassEval(Method-level)
HumanEval

Figure 5: Pass@1 (greedy) on ClassEval and HumanEval

Class-level code generation v.s. Method-level code genera-
tion. Based on Figure 5, we observe a significant decrease in correct-
ness for all studied models on our class-level benchmark ClassEval
compared to the existing method-level benchmark HumanEval. In
particular, the best-performing models GPT-4 and GPT-3.5 achieve
85.4%/68.9% correctness on method-level tasks in HumanEval, but
only 37.0%/27.0% correctness on class-level tasks in ClassEval. Sim-
ilar trends can be observed on other models, e.g., WizardCoder
correctly generates 59.8% methods on HumanEval, but only 11.0%
correct classes in our benchmark. Despite the inherent challenges
of generating a class with multiple methods, the observed decrease
in correctness on our benchmark ClassEval is not solely due to the
larger number of methods to generate. The code generated by all
models also shows lower method-level correctness on ClassEval
compared to HumanEval. For instance, the method-level Pass@1
of GPT-4 and GPT-3.5 drops from 85.4%/68.9% (on HumanEval) to
62.5%/52.5% (on ClassEval). This drop could be attributed to the
complexity of generating code that depends on other context, which
is known to be more challenging than generating standalone code.
This finding is consistent with recent work [67]. In summary, our
results show that existing LLMs still have limited performance in
solving complicated coding tasks, such as class-level code genera-
tion.

We also observe that the model performance in the standalone
method-level code generation tasks does not necessarily reflect
their capability of class-level code generation. For example, while
WizardCoder and Instruct-StarCoder exhibit much higher method-
level Pass@1 (59.8.4% and 34.1%) compared to SantaCoder (14.6%)

Evaluating Large Language Models in Class-Level Code Generation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

on HumanEval, all three model exhibit similar performance on
class-level code generation tasks in ClassEval (around 10% - 11%
Pass@1). This indicates that the method-level coding ability cannot
equivalently represent the class-level coding ability among LLMs,
further confirming the necessity of a class-level code generation
benchmark.
Finding 1: Existing LLMs demonstrate substantially lower per-
formance on class-level code generation tasks compared to stan-
dalone method-level code generation tasks. Additionally, the
method-level coding ability cannot equivalently represent the
class-level coding ability among LLMs. These findings strongly
confirm themotivation and necessity of constructing class-level
code generation benchmarks.

Comparison among models. As shown in Figure 5 and Table 7,
GPT series (GPT-4 and GPT-3.5) substantially outperform all the
other models on solving class-level coding tasks with both greedy
sampling and nucleus sampling. For example, in Table 7, they out-
perform the third-ranked model WizardCoder by 25.4% and 17.4%
in class-level Pass@1 with nucleus sampling. Such results indicate
the relatively stable dominance of GPT models when generalized
to solve more challenging class-level coding tasks.

The second-ranked tier includes larger code models like Instruct-
StarCoder, Instruct-CodeGen, and WizardCoder, achieving similar
Pass@1 with greedy sampling ranging from 10.0% - 11.1%. Notably,
while these models show significant performance differences on
method-level coding tasks in HumanEval, they perform similarly
on class-level coding tasks. Smaller models (e.g., PolyCoder) or
general models (e.g., ChatGLM) often exhibit worse performance,
as expected due to the importance of model size and instruction
datasets for generalization. The only exception is SantaCoder, which
achieves comparable performance to larger code models with a
much smaller model size.
Finding 2: On class-level code generation, GPT-4/GPT-3.5
still exhibits dominate superior than other LLMs; Instruct-
StarCoder, Instruct-CodeGen, and WizardCoder perform simi-
larly as the second tier; small or general models often perform
the worse, except SantaCoder, which achieves comparable per-
formance to larger models but with much less parameters.

GPT-
4

GPT-
3.5

Wiza
rdC

od
er

Ins
tru

ct-
Sta

rCod
er

Ins
tru

ct-
Cod

eG
en

Cod
eG

ee
X

Sa
nta

Cod
er

InC
od

er
Vic

un
a

Pol
yC

od
er

Cha
tGLM

0%
10%
20%
30%
40%
50%
60%
70%

C
la

ss
-le

ve
l P

as
s@

5 Holistic Generation
Incremental Generation
Compositional Generation

(a) Class-level Pass@5

GPT-
4

GPT-
3.5

Wiza
rdC

od
er

Ins
tru

ct-
Cod

eG
en

Sa
nta

Cod
er

Ins
tru

ct-
Sta

rCod
er

Cod
eG

ee
X

InC
od

er
Vic

un
a

Pol
yC

od
er

Cha
tGLM

0%
10%
20%
30%
40%
50%
60%
70%

M
et

ho
d-

le
ve

l P
as

s@
5 Holistic Generation

Incremental Generation
Compositional Generation

(b) Method-level Pass@5

Figure 6: Pass@5 of Three Generation Strategies

5.2 RQ2: Generation Strategies
Figure 6 compares the class-level Pass@5 and method-level Pass@5
of three different generation strategies. We find that the best gener-
ation strategy varies among different LLMs.

Holistic strategy v.s. others. On one hand, holistic generation is
the best generation strategy only for the two models GPT-4 and
GPT-3.5, which achieves much higher class-level Pass@5 than the
other two strategies (i.e., the improvements range from 6% to 9%
for GPT-4 and 4% to 14% for GPT-3.5). In addition, even for the
method-level correctness, holistic generation still outperforms gen-
erating method in an incremental or compositional way (i.e., 1.4% -
9.0% improvement in method-level Pass@5). On the other hand, the
trends are different for the other models, which actually perform
much better when generating the class method by method, namely
with the incremental or compositional strategies. For example, in
terms of the class-level correctness, CodeGeeX and SantaCoder gen-
erate 9% and 7% more correct classes with the incremental strategy
compared to the holistic generation strategy. The main reason is
that these models are able to generate much more correct methods
(i.e., 27.9% and 19.2% higher method-level Pass@5) when gener-
ating each method in separate iterations compared to generating
all methods at once. Therefore, these models have higher chance
to generate more correct classes if they are able to generate more
correct methods with the incremental or compositional strategy.

One potential reason might be that most models (except GPT
ones), exhibit rather limited capability of utilizing long input con-
texts, thus finding it more challenging to fully understand the code
generation tasks given the entire class skeleton. As revealed by the
recent work [47], LLMs often become substantially less effective
with the increasing length of inputs; and in particular they tend
to make better usage of the information located at the beginning
or end of the inputs than that in the middle of inputs. Therefore,
most existing LLMs perform better in generating a class method
by method, since the task inputs are with the more atomic focus
in such an incremental or compositional generation scenario; for
models like GPT-3.5 and GPT-4 with a better understanding of long
instructions, feeding the class-level context all at once is actually
beneficial for them to fully capture and utilize the constraints be-
tween each method, leading to better class-level code correctness.
Incremental strategy v.s. compositional strategy. As for the
two method-by-method strategies (i.e., incremental and composi-
tional strategies), we find the studied models actually have different
preference on them. In particular, compared to the compositional
generation manner, the additional inputs (the method body gener-
ated in previous iterations) in the incremental strategy are helpful
for some models such as Instruct-CodeGen, InCoder, CodeGeeX,
and SantaCoder. In contrast, the previously-generated method bod-
ies can negatively affect the performance of models like Instruct-
StarCoder andWizardCoder, resulting in a lower class-level correct-
ness in incremental generation. In addition to the limited capability
of handling long inputs mentioned above, another potential reason
for the model’s preference on a rather individual generation man-
ner might be that the compositional generation aligns better with
simple and atomic task instructions during instruction tuning.

Finding 3: Generating the entire class all at once (i.e., holistic
strategy) is the best generation strategy only for GPT-4 andGPT-
3.5. For the other models, method-by-method generation (i.e.,
incremental and compositional) works better. Such a disparity

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Du, et al.

might stem from their limited capability of understanding the
long instructions and utilizing the middle information.

5.3 RQ3: Dependency Generation
Method dependency v.s. Field dependency. Figure 7 presents the
average field dependencies DEP(F) and the method dependencies
DEP(M) of each model with the nucleus sampling. For space limits,
we only present the best results among three generation strategies.
Based on Figure 7, we can find that all models exhibit a much
higher success rate in generating code dependent to fields than
generating code dependent to other methods (i.e., higher DEP(F)
than DEP(M) on all the models). In other words, it might be much
easier for models to generate field-accessing code than method-
invoking code. In addition, among all the models, GPT models
still show consistent superior in generating dependent code, e.g.,
GPT-4 substantially outperform other LLMs by at least 12.6%/6.3%
improvement in DEP(F)/DEP(M).

GPT-
4(H

)

GPT-
3.5

(H)

Ins
tru

ct-
Sta

rCod
er(

C)

Wiza
rdC

od
er(

C)

Cod
eG

ee
X(C)

Sa
nta

Cod
er(

I)

InC
od

er(
I)

Ins
tru

ct-
Cod

eG
en

(C)

Cha
tGLM

(C)

Vic
un

a(I
)

Pol
yC

od
er(

C)0%

20%

40%

60%

80%

100%

D
EP

Method Dependency
Field Dependency

Figure 7: DEP(F) and DEP(M) in Nucleus Sampling

Impact of method dependency number. Given our observation
above that it is more challenging to generate method dependency,
we further investigate how each model performs at correctly gener-
ating code that invokes different number of other methods. Figure
8 is a stacked-bar plot that show the ratio of correctly-generated
methods to all methods with the given number (i.e., 0, 1, 2) of
method dependencies (based on the canonical solution). Based on
the figure, we can find that all the models perform best when gen-
erating methods that do not invoke any other method declared
in the class (the blue bar in the figure). In addition, we find that
no obvious difference when most models generate code invoking
one other method (the green bar) or invoking two other methods
(the yellow bar). In particular, for all the models, the average ratio
of correctly-generated code that invokes one or two method(s) is
27.7% and 27.6% respectively.

Finding 4: It is easier for all the models to generate field-
accessing code than method-invoking code. Additionally, they
are better at generating standalone methods that do no invoke
any other method.

5.4 RQ4: Bad Case Analysis
We further analyze the incorrectly-generated classes. To this end,
we automatically parse the error logs generated during interpreta-
tion and execution, and present the error distribution of all models

GPT-4

GPT-3
.5

Wiza
rdC

od
er

San
taC

od
er

Ins
tru

ct-
Cod

eG
en

Inc
od

er

Cod
eG

eeX

Ins
tru

ct-
Star

Cod
er

Vicu
na

Poly
Cod

er

Cha
tG

LM
0%

10%

20%

30%

40%

50%

60%

70%

80%
Dependency
 Number

0
1
2

Figure 8: Distribution of correctly-generated methods in in-
creasing method dependencies

51.6%

31.9% 5.2%
4.1%
3.0%
2.3%
1.8%

AttributeError
TypeError
sqlite3.OperationalError

ValueError
IndexError

PermissionError
KeyError

Figure 9: Error Distribution

 def condition_judge(self):
 bmi = self.get_BMI()
 bmi_std = self.BMI_std[0][self.sex]

...

 def __init__(self, height, weight, age, sex) -> None:
 ...
 self.BMI_std = [
 {"male": [20, 25]},
 {"female": [19, 24]}
]
 def condition_judge(self):
 BMI = self.get_BMI()
 if self.sex == "male":
 BMI_range = self.BMI_std[0]["male"]
 else:
 BMI_range = self.BMI_std[1]["female"]

...

Correct
Code

Error
Code

Field

self.sex == “female” KeyError

Figure 10: KeyError Code Example

in Figure 9. In particular, we find that most incorrect code encoun-
ters AttributeError and TypeError, indicating the limited model
ability of understanding and satisfying syntactic or semantic con-
straints in the code context. Additionally, a few cases encounter
KeyError due to erroneous operations on the dictionary variable.
Figure 10 shows such an example from GPT-3.5, resulting from a
misinterpretation of the field dependency. Specifically, the model er-
roneously accesses the first element of the field BMI_std list, which
is a dictionary with the key “male”. Attempting to access the key
self.sex as “female” within this dictionary triggers a KeyError. This
case indicate one of the challenges that LLMs might encounter in
handling inherent class-level dependencies.

Finding 5: The classes generated by LLMs suffer from Attribu-
teError and TypeError most frequently. In addition, the models
might encounter difficulties in understanding the dependent
contexts in the class.

6 IMPLICATION AND FUTURE DIRECTIONS
As the first class-level code generation benchmark, the major con-
tribution of ClassEval is to reveal existing models’ performance
on class-level code generation for the first time and also to call for
more future attention of improving LLMs on more challenging code
generation. Based on our findings, we then discuss implications
and explore how ClassEval can be utilized to improve the LLM as
detailed below.

Prompting LLMs to be aware of dependencies can improve
their performance in generating dependent code.As shown by
our results, it is challenging for LLMs to generate dependent code.
One potential prompt improving strategy is to address the model’s
attention to dependencies in the prompt. We further perform a
preliminary experiment on GPT-3.5 by including the additional
instruction “Please give special attention to the field and method

Evaluating Large Language Models in Class-Level Code Generation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

dependencies” in the prompt and the results show that the enhanced
prompt indeed improves the performance of LLMs with holistic
generation strategy by increasing the accuracy of class-level Pass@1
from 26.0% to 29.0%.

Choosing the suitable generation strategy for LLMs can
improve their performance in class-level code generation. As
shown by our results, different models have different best genera-
tion strategies. For models with strong long-text-comprehending
capabilities (e.g., GPT-4 and GPT-3.5), generating the whole class
all at once (i.e., the holistic generation strategy) shows the best
performance; for models with limited long-text-comprehending
capabilities, generating the class method by method (i.e., incremen-
tal or compositional generation) is a better generation strategy.
Therefore, one practical guideline for the future work is to focus on
different class-level code generation strategies for different LLMs,
e.g., designing novel step-by-step code generation strategies for
LLMs such as CodeGeeX.

We then discuss the future work as follows.
Buildmore benchmarks for complicated and practical soft-

ware development scenarios. Our results show a significant
performance decrease of all studied LLMs on class-level code gener-
ation tasks, which are more complicated coding tasks derived from
the practical software development scenario. In addition, the origi-
nal performance rankings among most models and their original
performance difference on function-level coding benchmarks no
longer hold on class-level coding tasks. While this work makes the
first attempt to construct class-level coding benchmarks for eval-
uating LLMs, there is still a large blank for benchmarks depicting
practical software development tasks, e.g., multi-class coding and
domain-specific coding. Thus, we call for more efforts to construct
such benchmarks for better understanding the model capability of
solving practical and complicated development tasks and also for
mitigating the overfitting phenomenon on existing benchmarks.

Enhance the model capability of understanding long in-
struction and solving compound tasks. Our results show that
most models have limited capability of handling long instructions
and utilizing the information in long contexts. Although there is a
trend that LLMs can take longer and longer inputs [25], the effec-
tiveness of utilization remains questionable. While researchers have
proposed diverse prompting strategies such as chain-of-thought [29]
and tree-of-thought [48] to improve model performance in solving
complicated tasks, and this work also makes some initial explo-
rations on three generation strategies for class-level coding tasks,
we still call for more efforts in designing such strategies specifically
for solving class-level coding tasks.

Improve the model capability of generating code depen-
dent to the context, especially the method invocations. Our
results show that all the models perform worse at generating code
dependent on contexts, and correctly invoking methods is more
challenging than accessing fields. Thus, we call for more efforts
on improving model capability of understanding the constraints
implied in code contexts by better prompting or tuning.

7 THREATS TO VALIDITY
Threats in benchmark construction. One potential threat is
the data leakage between our benchmark and model training data,

thus we manually construct the benchmark ClassEval. We also
involve multiple participants to mitigate the subjectiveness and
mistakes in manual participation. Another threat lies in the limited
size and programming languages in our current benchmark, which
cannot guarantee the generalizability of our findings, and we plan
to continually extend our benchmark in the future.
Threats in empirical study. To avoid buggy model implementa-
tion, we adopt the public versions following official guidelines of
each model. Another threat lies in the prompts used in our experi-
ments, which might impact our findings. To avoid underestimating
studied models, we perform a pilot study on a small set of prompt
candidates and select the one with the best performance on three
separate class-level coding tasks. We also report the results with
greedy decoding, which is deterministic, so as to mitigate the ran-
domness in model responses.

8 RELATEDWORK
Since we have discussed most relevant work on code generation
benchmarks in Section 2, we mainly introduce related work on
LLMs for software engineering and LLM evaluation in this section.
LLMs for Software Engineering. In the field of software engineer-
ing (SE), LLMs have shown remarkable potential by being applied
to an array of tasks. These include code generation [46, 54, 62, 72],
code summarization [12, 51] and various software maintenance
tasks, including vulnerability detection [58, 61, 73], test genera-
tion [68, 69], and program repair [26, 36, 37, 63]. These broad SE
application stems from their robust training on extensive code
and text data, which enhances their capabilities in both linguistic
understanding and code comprehension.
LLM evaluation. Multi-faceted evaluation for LLMs is crucial for
understanding the model capabilities given the black-box nature
of LLMs. To date, the evaluation for LLMs has covered a wide
range [20], encompassing not only traditional NLP tasks (e.g., sen-
timent analysis [17], question answering [16], and reasoning [19])
but also some specific downstream domains (e.g., medicine [23],
agent [34] and recommendation system [28]). Specifically in soft-
ware engineering domain, current evaluation focuses primarily on
code comprehension and generation tasks [15, 21, 41, 44]. Many
code LLMs (e.g., Codex [21] and PanGu-Coder2 [56]) are released
along with its rigorous evaluation on HumanEval to demonstrate
their capabilities on code generation. While these previous efforts
do not take scenarios beyond function-level code generation into
account, our work fills this gap by manually constructing the first
class-level code generation benchmark for evaluating LLM on more
complicated and practical software development tasks.

9 CONCLUSION
This work makes the first attempt to evaluate LLMs on class-level
code generation. We first manually construct the first class-level
code generation benchmark ClassEval and perform the first study
of 11 state-of-the-art LLMs on class-level code generation. We find
that all LLMs perform much worse on class-level code generation
compared to the method-level. While GPT models still dominate
other LLMs on class-level code generation, the ranking of model
performance on method-level code generation no longer holds
in the class-level code generation. Besides, most models (except

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Du, et al.

GPT models) perform better when generating the class method by
method; and they have the limited ability of generating dependent
code.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China (2021ZD0112903) and the National Natural Science Founda-
tion of China under Grant No. 62302099.

REFERENCES
[1] [n. d.]. ClassEval on GitHub. https://github.com/FudanSELab/ClassEval
[2] [n. d.]. ClassEval on Hugging Face. https://huggingface.co/datasets/FudanSELab/

ClassEval
[3] [n. d.]. Code generation datasets in Huggingface. https://hf.co/datasets?other=

code-generation
[4] [n. d.]. Coverage Library. https://pypi.org/project/coverage
[5] [n. d.]. mutmut. https://mutmut.readthedocs.io/en/latest/
[6] [n. d.]. OpenAI API interface. https://platform.openai.com/docs/api-reference
[7] [n. d.]. PyPI. https://pypi.org/search
[8] [n. d.]. Unittest Framework. https://pypi.org/project/unitest
[9] 2021. Dense-6.7B. https://huggingface.co/KoboldAI/fairseq-dense-6.7B-Shinen
[10] 2023. Instruct-CodeGen. https://huggingface.co/sahil2801/instruct-codegen-16B
[11] 2023. Instruct-StarCoder. https://huggingface.co/GeorgiaTechResearchInstitute/

starcoder-gpteacher-code-instruct
[12] Toufique Ahmed and Premkumar Devanbu. 2023. Few-Shot Training LLMs

for Project-Specific Code-Summarization. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (Rochester, MI, USA)
(ASE ’22). Association for Computing Machinery, New York, NY, USA, Article
177, 5 pages. https://doi.org/10.1145/3551349.3559555

[13] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Muñoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel
Lamy-Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel
Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu,
Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas,
Marco Zocca, SourabMangrulkar, David Lansky, HuuNguyen, Danish Contractor,
Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried,
Arjun Guha, Harm de Vries, and Leandro von Werra. 2023. SantaCoder: don’t
reach for the stars! CoRR abs/2301.03988 (2023). https://doi.org/10.48550/arXiv.
2301.03988 arXiv:2301.03988

[14] Ben Athiwaratkun, Sanjay Krishna Gouda, and Zijian Wang et al. 2023. Multi-
lingual Evaluation of Code Generation Models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net. https://openreview.net/pdf?id=Bo7eeXm6An8

[15] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR
abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

[16] Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He, Xiaozhi Wang, Jifan
Yu, Kaisheng Zeng, Yijia Xiao, Haozhe Lyu, Jiayin Zhang, Juanzi Li, and Lei
Hou. 2023. Benchmarking Foundation Models with Language-Model-as-an-
Examiner. CoRR abs/2306.04181 (2023). https://doi.org/10.48550/arXiv.2306.04181
arXiv:2306.04181

[17] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of
ChatGPT on Reasoning, Hallucination, and Interactivity. CoRR abs/2302.04023
(2023). https://doi.org/10.48550/arXiv.2302.04023 arXiv:2302.04023

[18] Thirumalesh Bhat and Nachiappan Nagappan. 2006. Evaluating the efficacy of
test-driven development: industrial case studies. In 2006 International Symposium
on Empirical Software Engineering (ISESE 2006), September 21-22, 2006, Rio de
Janeiro, Brazil. ACM, 356–363. https://doi.org/10.1145/1159733.1159787

[19] Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie Lu, and Ben He. 2023.
ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of
Commonsense Problem in Large Language Models. CoRR abs/2303.16421 (2023).
https://doi.org/10.48550/arXiv.2303.16421 arXiv:2303.16421

[20] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi
Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang,
Philip S. Yu, Qiang Yang, and Xing Xie. 2023. A Survey on Evaluation of Large
Language Models. CoRR abs/2307.03109 (2023). https://doi.org/10.48550/arXiv.
2307.03109 arXiv:2307.03109

[21] Mark Chen, Jerry Tworek, andHeewoo Jun et al. 2021. Evaluating Large Language
Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https:
//arxiv.org/abs/2107.03374

[22] Siheng Chen, Rohan Varma, Aliaksei Sandryhaila, and Jelena Kovacevic. 2015.
Discrete Signal Processing on Graphs: Sampling Theory. IEEE Trans. Signal
Process. 63, 24 (2015), 6510–6523. https://doi.org/10.1109/TSP.2015.2469645

[23] Joseph Chervenak, Harry Lieman, Miranda Blanco-Breindel, and Sangita Jin-
dal. 2023. The promise and peril of using a large language model to ob-
tain clinical information: ChatGPT performs strongly as a fertility counsel-
ing tool with limitations. Fertility and Sterility 120, 3, Part 2 (2023), 575–583.
https://doi.org/10.1016/j.fertnstert.2023.05.151

[24] Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yin-
peng Guo, Zhongqi Li, Qi Zhang, Meng Xiao, Bo Shen, Lin Li, Hao Yu, Li
Yan, Pingyi Zhou, Xin Wang, Yuchi Ma, Ignacio Iacobacci, Yasheng Wang,
Guangtai Liang, Jiansheng Wei, Xin Jiang, Qianxiang Wang, and Qun Liu.
2022. PanGu-Coder: Program Synthesis with Function-Level Language Mod-
eling. CoRR abs/2207.11280 (2022). https://doi.org/10.48550/arXiv.2207.11280
arXiv:2207.11280

[25] Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui
Wang, Nanning Zheng, and Furu Wei. 2023. LongNet: Scaling Transformers to
1, 000, 000, 000 Tokens. CoRR abs/2307.02486 (2023). https://doi.org/10.48550/
arXiv.2307.02486 arXiv:2307.02486

[26] Xueying Du, Mingwei Liu, Juntao Li, Hanlin Wang, Xin Peng, and Yiling Lou.
2023. Resolving Crash Bugs via Large Language Models: An Empirical Study.
CoRR abs/2312.10448 (2023). arXiv:2312.10448 https://doi.org/10.48550/arXiv.
2312.10448

[27] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive
Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022. Association for Computational Linguistics, 320–335. https:
//doi.org/10.18653/v1/2022.acl-long.26

[28] Wenqi Fan, Zihuai Zhao, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Jiliang
Tang, and Qing Li. 2023. Recommender Systems in the Era of Large Language
Models (LLMs). CoRR abs/2307.02046 (2023). https://doi.org/10.48550/arXiv.2307.
02046 arXiv:2307.02046

[29] Hao Fei, Bobo Li, Qian Liu, Lidong Bing, Fei Li, and Tat-Seng Chua. 2023. Rea-
soning Implicit Sentiment with Chain-of-Thought Prompting. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), ACL 2023, Toronto, Canada, July 9-14, 2023. Association for Com-
putational Linguistics, 1171–1182. https://aclanthology.org/2023.acl-short.101

[30] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

[31] Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian J. McAuley. 2023. Long-
Coder: A Long-Range Pre-trained Language Model for Code Completion. 202
(2023), 12098–12107. https://proceedings.mlr.press/v202/guo23j.html

[32] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. In
Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, vir-
tual. https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html

[33] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=rygGQyrFvH

[34] Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming
Ma, Tengchao Lv, Lei Cui, Owais Khan Mohammed, Barun Patra, Qiang Liu, Kriti
Aggarwal, Zewen Chi, Johan Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song,
and Furu Wei. 2023. Language Is Not All You Need: Aligning Perception with
Language Models. CoRR abs/2302.14045 (2023). https://doi.org/10.48550/arXiv.
2302.14045 arXiv:2302.14045

[35] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018.
Mapping Language to Code in Programmatic Context. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018. Association for Computational Linguistics,
1643–1652. https://doi.org/10.18653/v1/d18-1192

[36] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code
Language Models on Automated Program Repair. CoRR abs/2302.05020 (2023).
https://doi.org/10.48550/arXiv.2302.05020 arXiv:2302.05020

[37] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. InferFix: End-to-End Program Repair with LLMs.
(2023), 1646–1656. https://doi.org/10.1145/3611643.3613892

[38] Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang Lou. 2023. Explainable
Automated Debugging via Large Language Model-driven Scientific Debug-
ging. CoRR abs/2304.02195 (2023). https://doi.org/10.48550/ARXIV.2304.02195
arXiv:2304.02195

https://github.com/FudanSELab/ClassEval
https://huggingface.co/datasets/FudanSELab/ClassEval
https://huggingface.co/datasets/FudanSELab/ClassEval
https://hf.co/datasets?other=code-generation
https://hf.co/datasets?other=code-generation
https://pypi.org/project/coverage
https://mutmut.readthedocs.io/en/latest/
https://platform.openai.com/docs/api-reference
https://pypi.org/search
https://pypi.org/project/unitest
https://huggingface.co/KoboldAI/fairseq-dense-6.7B-Shinen
https://huggingface.co/sahil2801/instruct-codegen-16B
https://huggingface.co/GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct
https://huggingface.co/GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2301.03988
https://arxiv.org/abs/2301.03988
https://openreview.net/pdf?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2306.04181
https://arxiv.org/abs/2306.04181
https://doi.org/10.48550/arXiv.2302.04023
https://arxiv.org/abs/2302.04023
https://doi.org/10.1145/1159733.1159787
https://doi.org/10.48550/arXiv.2303.16421
https://arxiv.org/abs/2303.16421
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.2307.03109
https://arxiv.org/abs/2307.03109
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TSP.2015.2469645
https://doi.org/10.1016/j.fertnstert.2023.05.151
https://doi.org/10.48550/arXiv.2207.11280
https://arxiv.org/abs/2207.11280
https://doi.org/10.48550/arXiv.2307.02486
https://doi.org/10.48550/arXiv.2307.02486
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2312.10448
https://doi.org/10.48550/arXiv.2312.10448
https://doi.org/10.48550/arXiv.2312.10448
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.48550/arXiv.2307.02046
https://doi.org/10.48550/arXiv.2307.02046
https://arxiv.org/abs/2307.02046
https://aclanthology.org/2023.acl-short.101
https://proceedings.mlr.press/v202/guo23j.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/arXiv.2302.14045
https://doi.org/10.48550/arXiv.2302.14045
https://arxiv.org/abs/2302.14045
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.48550/arXiv.2302.05020
https://arxiv.org/abs/2302.05020
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.48550/ARXIV.2304.02195
https://arxiv.org/abs/2304.02195

Evaluating Large Language Models in Class-Level Code Generation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[39] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large LanguageModels are Few-
shot Testers: Exploring LLM-based General Bug Reproduction. In 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 2312–2323. https://doi.org/10.1109/ICSE48619.2023.00194

[40] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke
Zettlemoyer, Scott Wen-tau Yih, Daniel Fried, Sida I. Wang, and Tao Yu. 2022.
DS-1000: A Natural and Reliable Benchmark for Data Science Code Genera-
tion. CoRR abs/2211.11501 (2022). https://doi.org/10.48550/arXiv.2211.11501
arXiv:2211.11501

[41] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Enabling Programming Thinking in
Large Language Models Toward Code Generation. CoRR abs/2305.06599 (2023).
https://doi.org/10.48550/arXiv.2305.06599 arXiv:2305.06599

[42] Raymond Li, Loubna Ben Allal, and Yangtian Zi et al. 2023. StarCoder: may the
source be with you! CoRR abs/2305.06161 (2023). https://doi.org/10.48550/arXiv.
2305.06161 arXiv:2305.06161

[43] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,
James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-
Level Code Generation with AlphaCode. CoRR abs/2203.07814 (2022). https:
//doi.org/10.48550/arXiv.2203.07814 arXiv:2203.07814

[44] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. CoRR abs/2305.01210 (2023). https:
//doi.org/10.48550/arXiv.2305.01210 arXiv:2305.01210

[45] Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang
Lyu, Jiazhan Xie, and Xiaoxin Zhang. 2021. Learning-based extraction of first-
order logic representations of API directives. In ESEC/FSE ’21: 29th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021. ACM, 491–502. https:
//doi.org/10.1145/3468264.3468618

[46] Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du, Ying Wang, and Xin
Peng. 2023. CodeGen4Libs: A Two-Stage Approach for Library-Oriented Code
Generation. In 38th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2023, Luxembourg, September 11-15, 2023. IEEE, 434–445. https:
//doi.org/10.1109/ASE56229.2023.00159

[47] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. CoRR abs/2307.03172 (2023). https://doi.org/10.48550/arXiv.
2307.03172 arXiv:2307.03172

[48] Jieyi Long. 2023. Large Language Model Guided Tree-of-Thought.
CoRR abs/2305.08291 (2023). https://doi.org/10.48550/arXiv.2305.08291
arXiv:2305.08291

[49] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. WizardCoder: Em-
powering Code Large Language Models with Evol-Instruct. CoRR abs/2306.08568
(2023). https://doi.org/10.48550/arXiv.2306.08568 arXiv:2306.08568

[50] Bertrand Meyer. 1992. Applying "Design by Contract". Computer 25, 10 (1992),
40–51. https://doi.org/10.1109/2.161279

[51] Nam V. Nguyen, Kim Q. Tran, Jaehong Lee, and Hung Nguyen-Xuan. 2024. Nonlo-
cal strain gradient-based isogeometric analysis of graphene platelets-reinforced
functionally graded triply periodic minimal surface nanoplates. Appl. Math.
Comput. 466 (2024), 128461. https://doi.org/10.1016/J.AMC.2023.128461

[52] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. A Conversational Paradigm for Program
Synthesis. CoRR abs/2203.13474 (2022). https://doi.org/10.48550/arXiv.2203.13474
arXiv:2203.13474

[53] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/arXiv.2303.08774 arXiv:2303.08774

[54] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. (2022). arXiv:2201.11227 [cs.LG]

[55] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[56] Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan
Zeng, Ailun Yu, Jichuan Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang Wang.
2023. PanGu-Coder2: Boosting Large Language Models for Code with Ranking
Feedback. CoRR abs/2307.14936 (2023). https://doi.org/10.48550/ARXIV.2307.
14936 arXiv:2307.14936

[57] KR Srinath. 2017. Python–the fastest growing programming language. Interna-
tional Research Journal of Engineering and Technology 4, 12 (2017), 354–357.

[58] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu,
Xiaofei Xie, and Yang Liu. 2023. When GPT Meets Program Analysis:
Towards Intelligent Detection of Smart Contract Logic Vulnerabilities in

GPTScan. CoRR abs/2308.03314 (2023). https://doi.org/10.48550/ARXIV.2308.
03314 arXiv:2308.03314

[59] Hugo Touvron, Thibaut Lavril, and Gautier Izacard et al. 2023. LLaMA: Open
and Efficient Foundation Language Models. CoRR abs/2302.13971 (2023). https:
//doi.org/10.48550/arXiv.2302.13971 arXiv:2302.13971

[60] Vasudev Vikram, Caroline Lemieux, and Rohan Padhye. 2023. Can Large Lan-
guage Models Write Good Property-Based Tests? CoRR abs/2307.04346 (2023).
https://doi.org/10.48550/ARXIV.2307.04346 arXiv:2307.04346

[61] Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yiling Lou. 2023. Boosting
Static Resource Leak Detection via LLM-based Resource-Oriented Intention
Inference. CoRR abs/2311.04448 (2023). https://doi.org/10.48550/ARXIV.2311.
04448 arXiv:2311.04448

[62] Chong Wang, Jian Zhang, Yebo Feng, Tianlin Li, Weisong Sun, Yang Liu, and Xin
Peng. 2024. Teaching Code LLMs to Use Autocompletion Tools in Repository-
Level Code Generation. arXiv:2401.06391 [cs.SE]

[63] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational Automated
Program Repair. CoRR abs/2301.13246 (2023). https://doi.org/10.48550/ARXIV.
2301.13246 arXiv:2301.13246

[64] Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin
Zhang, and Wenyun Zhao. 2020. API method recommendation via explicit
matching of functionality verb phrases. In ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 1015–1026. https:
//doi.org/10.1145/3368089.3409731

[65] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In MAPS@PLDI 2022:
6th ACM SIGPLAN International Symposium on Machine Programming, San Diego,
CA, USA, 13 June 2022. ACM, 1–10. https://doi.org/10.1145/3520312.3534862

[66] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to mine aligned code and natural language pairs from stack
overflow. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. ACM, 476–486.
https://doi.org/10.1145/3196398.3196408

[67] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang,
Ying Li, Tao Xie, and Qianxiang Wang. 2023. CoderEval: A Benchmark of Prag-
matic Code Generation with Generative Pre-trainedModels. CoRR abs/2302.00288
(2023). https://doi.org/10.48550/arXiv.2302.00288 arXiv:2302.00288

[68] Shengcheng Yu, Chunrong Fang, Yuchen Ling, Chentian Wu, and Zhenyu Chen.
2023. LLM for Test Script Generation and Migration: Challenges, Capabilities,
and Opportunities. CoRR abs/2309.13574 (2023). https://doi.org/10.48550/ARXIV.
2309.13574 arXiv:2309.13574

[69] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No More Manual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. CoRR abs/2305.04207 (2023). https://doi.org/10.48550/
ARXIV.2305.04207 arXiv:2305.04207

[70] Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan,
Wang Yongji, and Jian-Guang Lou. 2023. Large Language Models Meet NL2Code:
A Survey. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Association for Computational Lin-
guistics, Toronto, Canada, 7443–7464. https://aclanthology.org/2023.acl-long.411

[71] Aohan Zeng, Xiao Liu, and Zhengxiao Du et al. 2023. GLM-130B: An Open
Bilingual Pre-trained Model. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https:
//openreview.net/pdf?id=-Aw0rrrPUF

[72] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program
understanding and generation. In ISSTA ’22: 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, South Korea, July 18 -
22, 2022. ACM, 39–51. https://doi.org/10.1145/3533767.3534390

[73] Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang, Yuhong Li, and Hui
Li. 2023. Prompt-Enhanced Software Vulnerability Detection Using Chat-
GPT. CoRR abs/2308.12697 (2023). https://doi.org/10.48550/ARXIV.2308.12697
arXiv:2308.12697

[74] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi
Mao, Jian-Guang Lou, and Weizhu Chen. 2023. RepoCoder: Repository-Level
Code Completion Through Iterative Retrieval and Generation. (2023), 2471–2484.
https://aclanthology.org/2023.emnlp-main.151

[75] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
Bench and Chatbot Arena. CoRR abs/2306.05685 (2023). https://doi.org/10.48550/
arXiv.2306.05685 arXiv:2306.05685

[76] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan
Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evalua-
tions on HumanEval-X. CoRR abs/2303.17568 (2023). https://doi.org/10.48550/
arXiv.2303.17568 arXiv:2303.17568

https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.48550/arXiv.2211.11501
https://arxiv.org/abs/2211.11501
https://doi.org/10.48550/arXiv.2305.06599
https://arxiv.org/abs/2305.06599
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.48550/arXiv.2203.07814
https://arxiv.org/abs/2203.07814
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://arxiv.org/abs/2305.01210
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1109/ASE56229.2023.00159
https://doi.org/10.1109/ASE56229.2023.00159
https://doi.org/10.48550/arXiv.2307.03172
https://doi.org/10.48550/arXiv.2307.03172
https://arxiv.org/abs/2307.03172
https://doi.org/10.48550/arXiv.2305.08291
https://arxiv.org/abs/2305.08291
https://doi.org/10.48550/arXiv.2306.08568
https://arxiv.org/abs/2306.08568
https://doi.org/10.1109/2.161279
https://doi.org/10.1016/J.AMC.2023.128461
https://doi.org/10.48550/arXiv.2203.13474
https://arxiv.org/abs/2203.13474
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2201.11227
https://doi.org/10.48550/ARXIV.2307.14936
https://doi.org/10.48550/ARXIV.2307.14936
https://arxiv.org/abs/2307.14936
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://arxiv.org/abs/2308.03314
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/ARXIV.2307.04346
https://arxiv.org/abs/2307.04346
https://doi.org/10.48550/ARXIV.2311.04448
https://doi.org/10.48550/ARXIV.2311.04448
https://arxiv.org/abs/2311.04448
https://arxiv.org/abs/2401.06391
https://doi.org/10.48550/ARXIV.2301.13246
https://doi.org/10.48550/ARXIV.2301.13246
https://arxiv.org/abs/2301.13246
https://doi.org/10.1145/3368089.3409731
https://doi.org/10.1145/3368089.3409731
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.48550/arXiv.2302.00288
https://arxiv.org/abs/2302.00288
https://doi.org/10.48550/ARXIV.2309.13574
https://doi.org/10.48550/ARXIV.2309.13574
https://arxiv.org/abs/2309.13574
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04207
https://arxiv.org/abs/2305.04207
https://aclanthology.org/2023.acl-long.411
https://openreview.net/pdf?id=-Aw0rrrPUF
https://openreview.net/pdf?id=-Aw0rrrPUF
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.48550/ARXIV.2308.12697
https://arxiv.org/abs/2308.12697
https://aclanthology.org/2023.emnlp-main.151
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://arxiv.org/abs/2306.05685
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
https://arxiv.org/abs/2303.17568

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models for Code Generation
	2.2 Existing Benchmarks for Code Generation

	3 New benchmark ClassEval
	3.1 Benchmark Format
	3.2 Benchmark Construction Procedure
	3.3 Benchmark Characteristics

	4 Empirical Study
	4.1 Studied LLMs
	4.2 Studied Generation Strategies
	4.3 Prompt Design
	4.4 Metrics
	4.5 Implementation Details

	5 Results
	5.1 RQ1: Overall Correctness
	5.2 RQ2: Generation Strategies
	5.3 RQ3: Dependency Generation
	5.4 RQ4: Bad Case Analysis

	6 Implication and Future Directions
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

