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Unit testing plays an essential role in detecting bugs in functionally-discrete program units (e.g., methods).
Manually writing high-quality unit tests is time-consuming and laborious. Although the traditional techniques
are able to generate tests with reasonable coverage, they are shown to exhibit low readability and still cannot
be directly adopted by developers in practice. Recent work has shown the large potential of large language
models (LLMs) in unit test generation. By being pre-trained on a massive developer-written code corpus, the
models are capable of generating more human-like and meaningful test code.

In this work, we perform the first empirical study to evaluate the capability of ChatGPT (i.e., one of the
most representative LLMs with outstanding performance in code generation and comprehension) in unit test
generation. In particular, we conduct both a quantitative analysis and a user study to systematically investigate
the quality of its generated tests in terms of correctness, sufficiency, readability, and usability. We find that
the tests generated by ChatGPT still suffer from correctness issues, including diverse compilation errors
and execution failures (mostly caused by incorrect assertions); but the passing tests generated by ChatGPT
almost resemble manually-written tests by achieving comparable coverage, readability, and even sometimes
developers’ preference. Our findings indicate that generating unit tests with ChatGPT could be very promising
if the correctness of its generated tests could be further improved.

Inspired by our findings above, we further propose ChatTester, a novel ChatGPT-based unit test gener-
ation approach, which leverages ChatGPT itself to improve the quality of its generated tests. ChatTester
incorporates an initial test generator and an iterative test refiner. Our evaluation demonstrates the effective-
ness of ChatTester by generating 34.3% more compilable tests and 18.7% more tests with correct assertions
than the default ChatGPT. In addition to ChatGPT, we further investigate the generalization capabilities of
ChatTester by applying it to two recent open-source LLMs (i.e., CodeLlama-Instruct and CodeFuse) and our
results show that ChatTester can also improve the quality of tests generated by these LLMs.
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1 INTRODUCTION

Unit testing [56, 67, 89] validates whether a functionally-discrete program unit (e.g., a method)
under test behaves correctly. As the primary stage in the software development procedure, unit
testing plays an essential role in detecting and diagnosing bugs in a nascent stage and prevents
their further propagation in the development cycle. Therefore, writing high-quality unit tests is
crucial for ensuring software quality. For a method under test (i.e., often called as the focal method),
its corresponding unit test consists of a test prefix and a test oracle [8]. In particular, the test prefix is
typically a series of method invocation statements or assignment statements, which aim at driving
the focal method to a testable state; and then the test oracle serves as the specification to check
whether the current behavior of the focal method satisfies the expected one.

Manually writing and maintaining high-quality unit tests can be very time-consuming and
laborious [19, 44]. To alleviatemanual efforts in writing unit tests, researchers have proposed various
techniques to facilitate automated test generation [9, 45, 49, 50, 68]. Traditional unit test generation
techniques leverage search-based [10, 20, 37], constraint-based [16, 28, 83], or random-based
strategies [59, 87] to generate a suite of unit tests with the main goal of maximizing the coverage
in the software under test. Although achieving reasonable coverage, these automatically-generated
tests exhibit a large gap to manual-written ones in terms of readability and meaningfulness, and
thus developers are mostly unwilling to directly adopt them in practice [6].
To address these issues, recent work [24, 51, 54, 73, 79] has leveraged advanced deep learning

(DL) techniques, especially large language models (LLMs), to generate unit tests. These techniques
mostly formulate unit test generation as a neural machine translation problem by translating a
given focal method into the corresponding test prefix and the test assertion. In particular, they
incorporate the power of LLMs by fine-tuning these pre-trained models on the test generation task.
Owing to being extensively pre-trained on a massive developer-written code corpus and then being
specifically fine-tuned on the test generation task, these models are capable of generating more
human-like and meaningful test code, showing a large potential of LLMs in unit test generation.
Study. In this work, we perform the first empirical study to evaluate the capability of ChatGPT [57]
(i.e., one of the most representative LLMs) in unit test generation. Different from the relatively-
smaller pre-trained models (e.g., BART [14], BERT [23], and T5 [64]) used in existing learning-
based test generation techniques [17, 23, 63–65, 84], ChatGPT incorporates instruction tuning and
RLHF [7] (Reinforcement Learning from Human Feedback) on a significantly-larger model, which
exhibits better generalization and higher alignment with human intention in various domains.
In particular, ChatGPT has demonstrated outstanding capability of solving various tasks in code
generation and comprehension [26, 27, 62, 76]. To enable a comprehensive evaluation, we first
construct a dataset of 1,000 Java focal methods, each along with a complete and executable project
environment. We incorporate ChatGPT to generate unit tests for each focal method and analyze
the quality of the generated tests to answer the following four research questions.
• RQ1 (Correctness): How is the correctness of the unit tests generated by ChatGPT? We
first measure the syntactic correctness, compilation correctness, and execution correctness of
the generated tests; and then further build a breakdown of the error types in the incorrect tests.

• RQ2 (Sufficiency): How is the sufficiency of the unit tests generated by ChatGPT?We
investigate the coverage and assertions of the tests generated by ChatGPT.
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• RQ3 (Readability): How is the readability of the unit tests generated by ChatGPT? For
those correct tests generated by ChatGPT, we perform a user study to assess their readability
along with the manually-written tests as reference.

• RQ4 (Usability): How can the tests generated by ChatGPT be used by developers? For
those correct tests generated by ChatGPT, we perform a user study to investigate whether
developers are willing to adopt them.
Based on our results, we have the following main findings. On the bad side, we find that only

a portion (24.8%) of tests generated by ChatGPT can pass the execution and the remaining tests
suffer from diverse correctness issues. In particular, 57.9% of ChatGPT-generated tests encounter
compilation errors, such as using undefined symbols, violating type constraints, or accessing private
fields; and 17.3% of the tests are compilable but fail during execution, which mostly result from the
incorrect assertions generated by ChatGPT. On the good side, we find the passing tests generated by
ChatGPT actually resemble manually-written ones by achieving comparable coverage, readability,
and sometimes even developers’ preference compared to manually-written ones. Overall, our
results indicate that ChatGPT-based test generation could be very promising if the correctness
issues in its generated tests could be further addressed. To this end, we further distill two potential
guidelines, i.e., providing ChatGPT with deep knowledge about the code and helping ChatGPT
better understand the intention of the focal method, so as to reduce the compilation errors and
assertion errors in its generated tests, respectively.
Technique. Inspired by our findings above, we further propose ChatTester, a novel ChatGPT-
based unit test generation approach, which leverages ChatGPT itself to improve the correctness of
its generated tests. ChatTester includes an initial test generator and an iterative test refiner. The
initial test generator decomposes the test generation task into two sub-tasks by (i) first leveraging
ChatGPT to understand the focal method via the intention prompt and (ii) then leveraging ChatGPT
to generate a test for the focal method along with the generated intention via the generation prompt.
The iterative test refiner then iteratively fixes the compilation errors in the tests generated by the
initial test generator, which follows a validate-and-fix paradigm to prompt ChatGPT based on the
compilation error messages and additional code context.
To evaluate the effectiveness of ChatTester, we further apply ChatTester on an evaluation

dataset of 100 additional focal methods (to avoid using the same dataset that has been extensively
analyzed in our study part) and three projects (to analyze the project-level effectiveness), and
compare the tests generated by ChatTester with the default ChatGPT. Furthermore, since the idea
of ChatGPT is general and not limited to the specific model (e.g., ChatGPT), we further investigate
the generalization capabilities of ChatTester by applying it to two recent open-source LLMs (i.e.,
CodeLlama-Instruct and CodeFuse). We answer the following research questions in experiments.
• RQ5 (Improvement): How effective isChatTester in generating correct tests compared

to ChatGPT? How effective is each component in ChatTester?We compare the number
of compilation errors and execution failures between the tests generated by ChatTester and the
default ChatGPT. Moreover, we investigate the contribution of each component in ChatTester.

• RQ6 (Generalization): How effective is ChatTester in improving the quality of gener-

ated tests when applied to other LLMs?We replace ChatGPT with other LLMs and study the
generalization capability of ChatTester on helping other LLMs generate high-quality tests.

• RQ7 (Project-level Effectiveness): How effective is ChatTester when applied to the

entire projects?We evaluate the coverage, readability, and usability of ChatTester-generated
tests when applied to entire projects.
Our results show that ChatTester substantially improves the correctness of the ChatGPT-

generated tests with 34.3% and 18.7% improvement in terms of the compilable rate and execution
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passing rate. In addition, our results further confirm the contribution of both components in
ChatTester, i.e., the initial test generator is capable to generate more tests with correct assertions
while the iterative test refiner is capable to fix the compilation errors iteratively. Furthermore,
our results show that ChatTester can be generalized to the two studied open-source LLMs (i.e.,
CodeLlama-Instruct and CodeFuse) by helping both of them generate more correct tests.

In summary, this paper makes the following contributions:
• The first study that extensively investigates the correctness, sufficiency, readability, and
usability of ChatGPT-generated tests via both quantitative analysis and user study;

• Findings and practical implications that point out the limitations and prospects of ChatGPT-
based unit test generation;

• The first technique ChatTester includes a novel initial test generator and iterative test
refiner, which leverages ChatGPT itself to improve the correctness of its generated tests;

• An extensive evaluation that demonstrates the effectiveness and generalization capability of
ChatTester by substantially reducing the compilation errors and incorrect assertions in tests
generated by ChatGPT and two open-source LLMs.
The data and code can be found on our website [12].

2 BACKGROUND

2.1 Large Language Models

Large language models (LLMs) are large-scale models pre-trained on a massive textual corpus [52,
58, 64, 74]. In order to fully utilize the massive unlabeled training data, LLMs are often pre-trained
with self-supervised pre-training objectives [5, 11, 33], such as Masked Language Modeling [29],
Masked Span Prediction [78], and Causal Language Modeling [55]. Most LLMs are designed on a
Transformer [74], which contains an encoder for input representation and a decoder for output
generation. Existing LLMs can be grouped into three categories, including encoder-only (e.g.,
CodeBERT [29]), decoder-only (e.g., CodeGen [55]), and encoder-decoder models (e.g., CodeT5 [78]).
To enhance the generalization ability and the human-intention-alignment of LLMs on unseen

downstream tasks, more recent work leverages instruction tuning and reinforcement learning
to further improve the model performance [57, 58]. For example, ChatGPT [57], one of the most
representative LLMs developed by OpenAI based on the generative pre-trained transformer (GPT)
architecture, first tunes the GPT model with instruction tuning and then updates the model with
reinforcement learning from human feedback. In addition to commercial LLMs, there are an
emerging number of open-source instructed LLMs (e.g., CodeLlama-Instruct [4] and CodeFuse [15])
that also show promising performance in various tasks.

2.2 Unit Test Generation

For a method under test (i.e., often called as the focal method), unit test generation techniques
automatically generate its corresponding unit test, which often consists of a test prefix and a test
oracle [8]. The test prefix is sequential method invocation statements or assignment statements to
drive the focal method to a testable state, and the test oracle (e.g., assertions) checks whether the
focal method behaves consistently with the specification.
Traditional techniques use search-based [31], random-based [59], or constraint-based strate-

gies [16, 28] to generate unit tests automatically. For example, Evosuite [31], one of the most
representative search-based techniques, uses evolutionary algorithms to generate test suites for
given Java classes with the goal of maximizing coverage. Although achieving reasonable cov-
erage, the tests generated by traditional techniques have low readability and meaningfulness
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compared to manually-written ones, which cannot be directly adopted by developers in prac-
tice [6, 18, 35, 36, 60, 61].
Recent work [24, 51, 54, 73, 79] leverages advanced deep learning techniques, especially LLMs,

to generate unit tests. Some learning-based techniques regard test generation as a neural machine
translation problem, which fine-tunes themodel to translate the focal method into the corresponding
test prefix or assertion. More recently, researchers propose different prompt strategies [43, 46, 48, 53]
to leverage instructed LLMs to generate test inputs and assertions.

3 STUDY SETUP

3.1 Benchmark

Existing benchmarks on unit test generation [73, 79] only include a limited code context (e.g.,
the focal method alone) rather than a complete and executable project, and it is hard to directly
compile and execute the generated tests with the existing datasets. Therefore, to comprehensively
evaluate the quality of ChatGPT-generated tests, we construct a new benchmark of not only focal
methods but also complete and executable projects. We construct our benchmark as follows.
Project Collection. We use the 4,685 Java projects in the popular benchmark CodeSearchNet [39]
as the initial project list. For each project, we clone it from GitHub (as of March 25, 2023) and
collect its relevant information (e.g., its creating time and its last commit time). To keep high-quality
projects, we filter the 4,685 Java projects according to the following criteria: (i) the project is under
continuous maintenance (i.e., the project should have been updated as of January 1, 2023); (ii) the
project has at least 100 stars; (iii) the project is built with Maven framework (for the ease of test
executions) and it could be successfully compiled in our local environment. In this way, we obtain
185 Java projects, containing 502/118 code/test files and 244,876/20,934 lines of code/test code.
Data Pair Collection.We then extract data pairs from the 185 Java projects. Each data pair refers to
the pair of the focal method information and its corresponding test method. In particular, in addition
to the focal method itself, the focal method information also includes the focal class declaration, all
the fields, and all the method signatures (i.e., the class constructor and the instance methods). For
each Java project, we extract data pairs in the following steps. (i) Given a Java project, we first find
all the test classes in the project. If a class contains at least one method annotated with @Test, we
regard this class as a test class and collect all the test methods in this test class. (ii) We then find the
corresponding focal method for each test method based on the file path and the class namematching.
For example, for a test method “testFunction()” located in the path “src/test/java/FooTest.java”, we
consider the method “Function()” located in the path “src/main/java/Foo.java” as its focal method.
For the cases when there are multiple focal methods with the same name in the same class, we
further filter them by the number and types of parameters to find the unique matching one. For
fair comparison, we currently keep the test methods comprising one test case.

With such strict mapping criteria, we extract 1,748 data pairs from 185 Java projects. Considering
the costs of using ChatGPT API and the manual efforts, we further sample 1,000 data pairs as our
final benchmark for the empirical study, which includes test methods and focal methods of diverse
scales and structures. The detailed statistics of our benchmark can be found at our website [12].

3.2 Basic Prompt Design

To avoid using too simple prompts that might lead to underestimation of ChatGPT’s capability
or using too sophisticated prompts that are uncommon in practice, we design our basic prompt
by carefully following the common practice in existing unit test generation work [54, 73, 79] and
widely-adopted experience on using ChatGPT [2, 25]. In particular, our basic prompt includes two
part: (i) the natural language description part (i.e., NL part) that explains the task to ChatGPT, and
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Fig. 1. Basic Prompt for getEnvironment [34] Method

(ii) the code context part (i.e., CC part) that contains the focal method and the other relevant code
context. We then explain each part in detail.
CC Part. Following existing learning-based unit test generation work [73], we include the following
code context into the CC part: (i) the complete focal method, including the signature and body; (ii)
the name of the focal class (i.e., the class that the focal method belongs to); (iii) the field in the focal
class; and (iv) the signatures of all methods defined in the focal class.
NL Part. Based on the widely-acknowledged experience on using ChatGPT, we include the follow-
ing contents in the NL part: (i) a role-playing instruction (i.e., “You are a professional who writes
Java test methods.”) to inspire ChatGPT’s capability of test generation, which is a common prompt
optimization strategy [2, 25]; and (ii) a task-description instruction (i.e., “Please write a test method
for the {focal method name} based on the given information using {Junit version}”).
The top half of Figure 1 shows an example of our basic prompt. After querying with the basic

prompt, ChatGPT then returns a test as shown in the bottom half of Figure 1.

Fig. 2. The Workflow of Our Empirical Study
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3.3 Baselines

We further include two state-of-the-art traditional and learning-based unit test generation tech-
niques as baselines. We focus on techniques applicable to generating JUnit tests due to our con-
structed benchmark. For traditional techniques, we use Evosuite [31] as the baseline with its default
setting (e.g., “assertion_strategy” =MUTATION and “assertion_timeout = 60s”). For learning-based
techniques, we include AthenaTest [73] as the baseline. We do not consider the recent learning-
based test completion technique Teco [54] since it mainly targets at statement-level test completion
while in this work we focus on directly generating a complete test method. We do not include
the two Codex-based test generation techniques (e.g., CODAMOSA [46] and LIBRO [43]), since
they focus on different test generation scenarios as ours (More detailed explanation can be found
in Section 8.2). For AthenaTest, since it has not released its pre-trained BART-based model or
its fine-tuned model, we try our best to reproduce it according to its paper. Since AthenaTest
has not released its pretraining dataset neither, it is infeasible (also very resource-consuming) to
re-pretrain an LLM. Therefore, we reproduce AthenaTest by fine-tuning the widely-used LLM
CodeT5 on the same fine-tuning dataset used in AthenaTest. We choose CodeT5 since it has been
pre-trained on both textual and code corpus, which is also the best pre-training setting shown in
the AthenaTest paper [73]. In addition, to avoid potential data leakage, we remove the overlap data
from the fine-tuning dataset if it is duplicated in our benchmark based on character matching.

3.4 Experimental Procedure

Figure 2 shows the overview of our experimental procedure. For each data pair in the benchmark
constructed in Section 3.1, we query ChatGPT with our basic prompt designed in Section 3.2 and
take the test generated by ChatGPT as the output. To automate our experiments, we use the official
ChatGPT API [57] with the default setting. In this work, we focus on the gpt-3.5-turbo model
rather than GPT-4, due to the limited rate of GPT-4 API for non-industrial users. We then put the
generated test in the same directory of its focal class, and attempt to compile and execute it for
further analysis. We then explain the detailed procedure in each RQ, respectively.
RQ1: Correctness. Following existing learning-based test generation work [54, 73], we measure
the correctness of the generated tests with three metrics, including (i) syntactic correctness (whether
the test could pass the syntax checker), (ii) compilation correctness (whether the test could be
successfully compiled), and (iii) execution correctness (whether the test could pass the execution).
Here we leverage AST parser (such as JavaParser [1]) as a syntax checker. In addition, we further
investigate the common error types in those incorrect tests to better understand the limitations
of ChatGPT in test generation. Specifically, we automatically extract the error messages thrown
during the compilation and execution, including different compilation and execution error types.
RQ2: Sufficiency. In this RQ, we include threemetrics to assess the sufficiency of the tests generated
by ChatGPT: (i) the statement coverage of the test on the focal method; (ii) the branch coverage
of the test on the focal method; (iii) the number of assertions in the test case. In particular, we
leverage Jacoco [3] to collect the coverage.
RQ3 & RQ4: User study for readability and usability. In these two RQs, we conduct a user
study to investigate the readability and usability of the tests generated by ChatGPT. Here, we only
focus on 248 passing tests generated by ChatGPT since it is less meaningful to recommend tests
with compilation errors or execution errors to developers in practice. We invite five participants
whose Java development experiences vary from 4 years to 5 years. For each ChatGPT-generated
test and its corresponding manually-written test, we ask each participant to score their readability
and usability via the detailed criteria in Table 1. In particular, the score range of both readability
and usability is from 2 to 6, which are the sum of its sub-properties, i.e., readability consists of the
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naming intuitiveness and the code layout while the usability consists of the assertion quality and
the adoption efforts. Given the large manual efforts required by such an assessment procedure, we
set a reward mechanism (i.e., 250$ per participant) and sufficient time (i.e., two weeks) to mitigate
arbitrary responses. In addition, participants are not informed which test is generated by ChatGPT
or which is written manually.

Table 1. Scoring Criteria for Readability and Usability

Scoring criteria

Readability

(2 ~ 6)

Naming Intuitiveness (1 ~ 3):

the clarity and descriptiveness of
variable and test method names

3: Most names are intuitive and easy to understand.
2: Some names are intuitively named and easy to understand.
1: Most names are hard to understand without extensive context.

Code Layout (1 ~ 3): the code
structure, logic, and formatting.

3: Well-structured code with clear logic.
2: Overall reasonable structure with minor issues.
1: Chaotic logic or massive redundant code

Usability

(2 ~ 6)

Assertion Quality (1 ~ 3):

validating the focal method with
appropriate assertions.

3: Accurate assertions withnin the test context.
2: Reasonable but weak assertions.
1: semantically-incorrect assertions.

Adoption Efforts (1 ~ 3): how
easily the generated tests can be
adopted into the practical usage.

3: No efforts required before direct adoption.
2: Simple modifications required before direct adoption.
1: Extensive efforts required to optimize.

Table 2. Correctness of Generated Tests

Metrics (%) ChatGPT AthenaTest Evosuite

Syntactical correct ≈ 100.0 54.8 100.0
Success compilation 42.1 18.8 97.6
Passing execution 24.8 14.4 91.4

4 STUDY RESULTS

4.1 RQ1: Correctness

Table 2 presents the correctness of the 1,000 tests generated by ChatGPT and other techniques.
Overall, we could observe that a large portion of tests generated by ChatGPT suffer from correctness
issues, i.e., 42.1% of the generated tests are successfully compiled while only 24.8% of the generated
tests are executed successfully without any execution errors. We further manually inspect the failed
tests to check whether they actually reveal bugs in the focal method under test, but we find that all
of them are caused by the improper test code itself.
As for the learning-based baseline AthenaTest, ChatGPT has a substantial improvement over

AthenaTest in terms of syntactic correctness, compilation correctness, and executable correctness.
For example, almost all the tests generated by ChatGPT (except the one has an incorrect parenthesis
generated) are syntactically correct, but nearly a half of the tests generated by AthenaTest are
syntactically incorrect. The reason might be that the significantly-larger model scale in ChatGPT
helps better capture syntactical rules in the massive pre-training code corpus. As for the traditional
search-based baseline Evosuite, we could observe a higher compilable rate and passing rate in its
generated tests. In fact, it is as expected since Evosuite prunes invalid test code during its search
procedure and generates assertions exactly based on the dynamic execution values, while learning-
based techniques (i.e., ChatGPT and AthenaTest) directly generate tests token by token without
any post-generation validation or filtering. Therefore, we do not intend to conclude that Evosuite is
better at generating more correct tests, since the correctness of tests generated by learning-based
techniques could be further improved if they also incorporate similar post-generation validation to
filter those incorrect tests.
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Finding 1: ChatGPT substantially outperforms existing learning-based techniques in terms of
syntactic, compilation, and execution correctness. However, only a portion of its generated tests
can pass the execution while a large ratio of its generated tests still suffer from compilation
errors and execution errors.

Bad Case Breakdown.We further analyze the common error types in the failed tests generated by
ChatGPT (i.e., those tests failed on the compilation or execution). In particular, we first automatically
categorize each test based on the error message; and then we manually summarize and merge
similar types into high-level categories. Table 3 shows the breakdown for tests with compilation
errors, while Table 4 shows the breakdown for tests with execution failures.

Table 3. Compilation Error Breakdown

Category Detailed Errors Frequency

Symbol
Resolution

Error

Cannot find symbol class 1,934
Cannot find symbol method 471
Cannot find symbol variable 466
Cannot find symbol 169

Type Error
Incompatible types 73
Constructor cannot be applied to given types 46
Methods cannot be applied to given types 11

Access Error Private access 75
Abstract Class
Initiation Error Abstract class cannot be instantiated 33

Unsupported
Operator Diamond operator is not supported 15

Table 4. Execution Error Breakdown

Category Detailed Errors Frequency

Assertion
Error

java.lang.AssertionError/
org.opentest4j.AssertionFailedError/
org.junit.ComparisonFailure/
org.junit.internal.ArrayComparisonFailure

148

Runtime
Error

java.lang.IllegalArgumentException 6
java.lang.RuntimeException 5
java.lang.NullPointerException 3
others 11

Failed Compilation. In Table 3, the column “Frequency” shows the number of each compilation
errors in 579 uncompilable tests. Note that there could be multiple compilation errors in one test
and thus the sum is larger than 579. Due to space limits, we only present the frequent compilation
errors observed more than 10 times. As shown in the table, the generated tests have diverse
compilation errors. First, the most frequent compilation errors are caused by un-resolvable symbols,
e.g., the generated tests include some undefined classes, methods, or variables. Second, another
large category of compilation errors are related to type errors, e.g., the parameter type in the
method invocation is inconsistent with the one defined in the method declaration. Third, ChatGPT
also frequently generates test code that invalidly accesses private variables or methods (i.e., access
errors). In addition, some generated tests encounter compilation errors by invalidly instating
abstract class or using unsupported operators.

Failed Execution. In Table 4, we group all the infrequent errors (i.e., less than three times) into the
“others” category due to space limits. As shown in the table, the majority of failed executions (85.5%)
are caused by assertion errors, i.e., the assertions generated by ChatGPT consider the behavior
of the program under test violates the specification. As mentioned above, we manually inspect
these assertion errors to identify whether they are caused by the bugs in the focal method or the
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incorrect assertions themselves, and we find all of them as a result of incorrect assertions generated
by ChatGPT. It implies that ChatGPT might fail to precisely understand the focal method and
the quality of the assertions generated by ChatGPT should be largely improved. In addition, we
observe that the remaining execution errors are related to different runtime exceptions. For example,
Figure 3 presents an example of the failed execution in the test generated by ChatGPT. The test
throws NullpointerException when executing line 3. The error occurs because the created object
“url” assesses an external resource “/test.jar” which does not exist (in line 2). It actually shows an
inherent limitation in ChatGPT, i.e., the unawareness of external resources during test generation.

Fig. 3. NullPointerException Example

Finding 2: The ChatGPT-generated tests encounter diverse compilation errors, such as symbol
resolution errors, type errors, and access errors; the majority of failed executions are caused by
the incorrectly-generated assertions.

4.2 RQ2: Sufficiency

Table 5 presents the statement and branch coverage of generated tests that could pass the execution.
As the un-executable tests exhibit zero coverage which can bias the overall results, the coverage
is uniformly calculated on the focal methods for which both ChatGPT and Evosuite can generate
executable tests. We further include the coverage of the manually-written tests (i.e., the original
test for the focal method in the project) for reference. Since Evosuite might generate more than one
tests for a focal method, we present the first, worse, average, and union coverage of its generated
tests. As shown in the table, we could observe that the tests generated ChatGPT achieve the highest
coverage compared to existing learning-based and search-based techniques and it also achieve
comparable coverage as manually-written tests.

Table 5. Coverage of Generated Tests

EvosuiteCoverage (%) ChatGPT AthenaTest First Worst Best Average Union Manual

Statement 82.3 65.5 68.0 39.7 76.2 56.9 81.1 84.2
Branch 65.6 56.2 61.2 31.9 62.1 45.8 77.3 68.9

Figure 4 presents a distribution plot for the number of assertions in each test generated by
different techniques. Interestingly, we observe that ChatGPT-generated tests exhibit most similar
distribution as manually-written tests in the number of assertions per test. In particular, Evosuite
tends to generate tests with less assertions while the learning-based technique AthenaTest would
generate some tests with abnormally-larger number of assertions (i.e., more than 15 assertions
per test) than manually-written ones. The potential reason might be that RLHF helps ChatGPT
generate more human-like test code.
Finding 3: The ChatGPT-generated tests resemble manually-written ones in terms of test
sufficiency. ChatGPT achieves comparable coverage as manual tests, and also the highest
coverage compared to existing techniques; ChatGPT also generate more human-like tests with
similar number of assertions per test as manually-written tests.
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Fig. 4. Number of Assertions in Generated Tests

4.3 RQ3: Readability

Figure 5 shows the score distribution of readability in a stacked bar chart, where the x-axis represents
each participant (i.e., from A to E) and the y-axis represents the ratio of different scores. Overall,
most ChatGPT-generated tests are assessed with decent readability, and they are also considered
with comparable and sometimes even better readability compared to manually-written tests.
Finding 4: The tests generated by ChatGPT have reasonable and comparable readability as
manually-written ones.

Fig. 5. Response to Readability

4.4 RQ4: Usability

Figure 6 shows the score distribution of usability in a stacked bar chart, where the x-axis represents
each participant (i.e., fromA to E) and the y-axis represents the ratio of different scores. Interestingly,
we find the ChatGPT -generated tests exhibit comparable usability compared to manually-written
ones. Based on the scoring details of the two sub-properties in usability (i.e., assertion quality
and adoption efforts, we find that most ChatGPT-generated tests are assessed with high-quality
assertions for immediate usage, which makes the participants’ high willing of direct usage.
Finding 5: ChatGPT-generated tests show a large potential in practical usability. In a consider-
able portion of cases, participants are willing to directly adopt ChatGPT-generated tests.

4.5 Enlightenment

Based on our results above, we further discuss the implications on the strengths and the limitations
of ChatGPT-based unit test generation.
Limitations.As shown in our results, a large portion of ChatGPT-generated tests fail in compilation
or execution, which might result from two inherent limitations in generative language models.

First, most compilation errors might be caused by ChatGPT’s unawareness of the “deep knowl-
edge” in the code. Although being pre-trained on a massive code corpus could help ChatGPT capture
the syntactical rules in the code, the nature of ChatGPT is still a probabilistic token-sequence
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Fig. 6. Response to Usability

generator and thus it is challenging for ChatGPT to be fully aware of the deep rules in the code,
e.g., only the public fields could be accessed outside the class and the abstract classes cannot be
instantiated. Therefore, to help ChatGPT overcome this limitation, it is important to remind ChatGPT
of such deep knowledge during its generating tests.

Second, most execution errors (i.e., assertion errors) result from ChatGPT’s lack of understanding
about the intention of the focal method. As a result, it is challenging for ChatGPT to write proper
assertions as specification for the focal method under test. Therefore, to help ChatGPT overcome this
limitation, it is essential to help ChatGPT to better understand the intention of the focal method.
Strengths. Although generating a lot of tests failed in compilation or execution, the good thing
is that most of the passing tests generated by ChatGPT are often of high quality in terms of the
sufficiency, the readability, and the usability in practice. These passing tests could mostly be put into
direct use to alleviate manual test-writing efforts. Therefore, leveraging ChatGPT to generate unit
tests is a promising direction if the correctness issues in its generated tests could be further addressed.

Enlightenment: ChatGPT-based unit test generation is promising since it is able to generate a
number of high-quality tests with comparable sufficiency, readability, and usability as manually-
written tests. However, further efforts are required to address the correctness issues in the
ChatGPT-generated tests. The two directions to this end are (i) to provide ChatGPT with deep
knowledge about the code and (ii) to help ChatGPT better understand the intention of the focal
method, so as to reduce its compilation errors and assertion errors, respectively.

5 APPROACH OF CHATTESTER

Overview. Inspired by our findings and enlightenment above, we then propose ChatTester, a
novel ChatGPT-based unit test generation approach, which improves the correctness of ChatGPT-
generated tests by ChatGPT itself. In particular, ChatTester contains two components, i.e., an
initial test generator and an iterative test refiner. Figure 7 shows the workflow of ChatTester.
Instead of directly asking ChatGPT to generate a test for the given focal method, the initial

test generator decomposes the test generation task into two sub-tasks: (i) first understanding the
intention of the focal method, and (ii) then generating a unit test for the focal method based on
the intention. Compared to the basic prompt, the initial test generator aims to generate tests with
higher-quality assertions based on the help of the intermediate step of intention generation.

The iterative test refiner iteratively fixes the compilation errors in the tests generated by the initial
test generation. As mentioned in our enlightenment, the key to eliminating most uncompilable
tests is to provide “deep knowledge” to ChatGPT during test generation. However, given the large
number of such potential rules, it is infeasible to include all of them in the prompt in advance
to the test generation. Therefore, we follow a validate-and-fix paradigm to iteratively refine the
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Fig. 7. The Workflow of ChatTester

uncompilable test by prompting ChatGPT with compilation error messages and additional relevant
code context. In other words, the iterative test refiner actually leverages the error messages from
the compiler as the violation instances of the “deep knowledge”, so as to fix compilation errors in
the generated tests.

Fig. 8. Basic Prompt v.s. Prompts in the Initial Test Generator
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5.1 Initial Test Generator

The initial test generator decomposes test generation into two steps: (i) first leveraging ChatGPT to
understand the focal method via the intention prompt, and (ii) then leveraging ChatGPT to generate
a test for the focal method along with the generated intention via the generation prompt.
The intention prompt asks ChatGPT to return a natural language description of the intended

functionality of the focal method under test. In particular, the code context part is similar to the
basic prompt in Section 3.2, including the class declaration, constructor signatures, relevant fields,
and the focal method itself; and the natural language instruction is to ask ChatGPT to infer the
intention of the focal method. Then, the generation prompt further includes the generated intention
and asks ChatGPT to generate a unit test for the focal method.
Figure 8 presents an example comparing how the basic prompt and the initial test generator

generate a test for the same given focal method “setCharAt()”. As shown in Figure 8 (a), given
the basic prompt without any intention inference, ChatGPT generates a test with an incorrect
assertion (i.e., “assertEquals(Hello-World, strBuilder.toString())”. However, in Figure 8 (b), with the
intention prompt, ChatGPT first correctly generates the intention for the focal method “setCharAt()” ;
and then with the generation prompt, ChatGPT generates a test with a correct assertion (i.e.,
“assertEquals(Hello Jorld, strBuilder.toString())”. The additional intention inference is designed to
enhance ChatGPT’s understanding about the focal method, which further leads to more accurate
assertion generation.

Fig. 9. Prompt in the Iterative Test Refiner
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5.2 Iterative Test Refiner

The iterative test refiner iteratively fixes the compilation errors in the tests generated by the initial
test generation. Each iteration successively leverages two steps: (i) first validating the generated
test by compiling it in a validation environment; (ii) second constructing a prompt based on the
error message during compilation and the extra code context related to the compilation error. The
new prompt is then queried into ChatGPT to get a refined test. Such a procedure repeats until
the generated test can be successfully compiled or the maximum number of iterations is reached.
Currently, we only focus on fixing compilation errors instead of execution errors, since in practice
it is challenging to identify whether a test execution failure is caused by the incorrect test code or
by the incorrect focal method. We then explain each step with the illustration example in Figure 9.
Validator. For ease of compiling the generated test, we directly create a test file in the same
directory of the focal class. In particular, the generated test method is encapsulated in a test class
with relevant import statements. Then, the test file is compiled with the Java compiler. A controller
then decides the next step based on the compilation status:
• Successful compilation: if there is no compilation error, the controller would terminate the
iterative refinement procedure and return the final test;

• Valid refinement: if the number of compilation errors is less than that in the last iteration, the
current refinement is considered as a valid refinement. The controller then proceeds to the
iterative prompt constructor so as to continue the refinement;

• Invalid refinement: if the number of compilation errors is larger than or the same as that in the
last iteration, the current refinement is considered an invalid refinement. The controller would
terminate the refinement if the accumulated number of invalid refinements is larger than the
maximum (e.g., 3 in our experiments); or proceeds to the iterative prompt constructor.

Iterative Prompt Constructor. The iterative prompt constructor is built on top of (i) an EM parser
that analyzes the error message about the compilation error, and (ii) a code analyzer that extracts
the additional code context related to the compilation error.

In particular, the EM parser collects three types of information by parsing the error message:
• Error type: the high-level description about the error, which is often the first sentence in the
error message. For example, “cannot find simple class ...” and “cannot find symbol method ...” are
extracted error types in the illustration example.

• Buggy location: the line number of the test code triggering compilation errors. With such location
information, the prompt constructor is able to insert the relevant information around the buggy
line, i.e., starting with the tag “⟨Buggy line⟩” as shown in the example.

• Buggy element: the objects or variables in the buggy location. For example, for the second
iteration in Figure 9, we analyze the buggy line with the error message, and find that they are
associated with the class “Xml” (which is the buggy element in this example).
With the buggy elements, the code analyzer is then able to extract additional code context

from other Java files rather than the focal class. In particular, the code analyzer first parses the
whole project to find the class file that the buggy element belongs to, and then extracts the class
declaration and public method signature from the class file. This extracted class information would
further be added to the prompt as additional information, e.g., “//Xml class ...” highlighted in blue.
In fact, such additional information from other classes could be very important for generating
high-quality tests, since it is very common that the test code involves not only the focal class but
also other classes. However, given the limited input length for ChatGPT, it is infeasible to directly
include the whole program in the prompt (which would also lead to bad performance since the
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focus of ChatGPT might be confused). Therefore, in ChatTester, we propose to append necessary
additional code contexts in such an iterative way.

6 EVALUATION OF CHATTESTER

We systematically evaluate ChatTester for its effectiveness (RQ5), its generalization capability on
different LLMs (RQ6), and its project-level effectiveness (RQ7).

6.1 Evaluation Setup

RQ5 Setup. As for the evaluation dataset in RQ5, we re-sample another 100 data pairs from the
remaining 748 data pairs in Section 3.1 (recall that we collect 1,748 data pairs in total and 1,000 of
them are included in the benchmark for the empirical study). The reason that we construct such an
additional evaluation dataset for evaluation is to avoid using the same benchmark that has been
extensively analyzed in our previous study. Since our approach is inspired by the findings from our
study, evaluating it on a separate dataset could eliminate the potential overfitting issues.
As for the studied techniques in RQ5, to evaluate the overall effectiveness of ChatTester and

the individual contribution of each component (i.e., the initial test generator and the iterative
test refiner) in ChatTester, we study four techniques (1) ChatGPT: the default ChatGPT with
the basic prompt, which is the one used in our empirical study; (2) ChatTester-Ite: a variant of
ChatTester without the iterative test refiner, which actually enhances the default ChatGPT with
the initial test generator of ChatTester; (3) ChatTester-Ini: a variant of ChatTester without
the initial test generator, which actually enhances the default ChatGPT with the iterative test refiner
of ChatTester; (4) ChatTester: the complete ChatTester with both the initial test generator
and the iterative test refiner. To mitigate the randomness in ChatGPT, we repeat all experiments
three times and present the average results.
RQ6 Setup. To evaluate the generalization capability of ChatTester with different LLMs, we
replace ChatGPT in ChatTester with two different open-source LLMs, i.e., CodeLlama-Instruct-
34B [4] and CodeFuse-34B [15]. For both studied LLMs, we compare their effectiveness of test
generation with (i) the basic prompt in a default way and (ii) with the ChatTester framework.
RQ7 Setup. To evaluate the project-level effectiveness of ChatTester, we select three represen-
tative projects from the 185 Java projects in Section 3.1. Table 6 presents the characteristics of
the selected projects, which belong to different domains with 3k to 6k lines of code. We apply
ChatTester and all baselines (i.e., AthenaTest, ChatGPT, and Evosuite) to generate tests for each
method in the project. To evaluate the test sufficiency in such a project-level setting, we further
compare the statement coverage and branch coverage of the generated tests on each entire project.
For fair comparison, we randomly select one test when Evosuite generates multiple tests for one
focal method. In addition, we further perform a user study to manually compare the readability and
usability of the tests generated by ChatTester and baselines on a statistically-sampled subset (i.e.,
219 tests for each technique, which are sampled within the 0.05 error margin at a 95% confidence
level [70, 75]). We follow the similar user study methodology in Section 3.4, i.e., the five participant
are asked to score the readability and usability of the generated tests based on the scoring details
in Table 1.

Table 6. Overview of Projects in RQ7

Project Name # Line Of Code Domain
zappos-json [86] 3,552 Serialization
tabula-java [72] 5,586 File processing
jInstagram [41] 6,303 Instagram API wrapper
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Table 7. Effectiveness of ChatTester

Metrics (%) ChatGPT ChatTester-Ite ChatTester-Ini ChatTester

Syntactical correct 100.0 100.0 100.0 100.0
Success compilation 39.0 50.7 60.6 73.3
Passing execution 22.3 29.7 34.0 41.0

6.2 Evaluation Results

6.2.1 RQ5: Effectiveness Evaluation. Table 7 presents the correctness of the tests generated by
ChatGPT and our approaches. Overall, we could observe a substantial improvement in both the
compilation rate and passing rate of the tests generated by ChatTester compared to the default
ChatGPT. For example, additional 34.3% tests (= 73.3% - 39.0%) can be successfully compiled and
additional 18.7% tests (= 41.0% - 22.3%) can pass the execution. In summary, the proposed approach
ChatTester effectively improves the correctness of the tests generated by ChatGPT.

In addition, we could observe that the variant ChatTester-Ite outperforms the default ChatGPT
by achieving 11.7% and 7.4% improvements in the compilation rate and passing rate. In particular,
we find that among the ChatGPT-generated tests with incorrect assertions, 12.5% of them are fixed
into correct assertions in ChatTester-Ite, indicating the effectiveness of the initial test generator.
Figure 8 is an example of how the intention prompt improves the correctness of assertions in our
dataset. In addition, when comparing ChatTester against the variant ChatTester-Ini, we can
find that removing the initial test generator would decrease 12.7% compilation rate and 7.0% passing
rate, further confirming the contribution of the initial test generator. Moreover, we could observe a
further improvement from ChatTester-Ite to ChatTester, i.e., additional 22.6% tests and 11.3%
tests are fixed by the iterative test refiner into compilable tests and passing tests. Figure 9 is an
example of how the iterative test refiner fixes the compilation errors in two iterations. In summary,
both components (i.e., the initial test generator and the iterative test refiner) positively contribute
to the effectiveness of ChatTester.

Table 8. Distribution of Iteration Numbers in ChatTester

# Iteration 0 1 2 3 4 5 6 7 8 9 10

# Tests 37 12 9 0 1 12 18 10 0 0 1
# Success Compilation 31 10 6 0 1 0 15 6 0 0 0
# Passing Execution 31 9 2 0 0 0 0 0 0 0 0

Costs and number of iterations. Table 8 presents the distribution of iterative test refinement times
of ChatTester. The row “# Iteration” shows the number of iterations; the row “# Tests ” shows the
number of tests that are still being refined in this iteration; the row “# Success Compilation” and the
row “# Passing Execution” show the number of tests that are successfully compiled and executed
in the current iteration, respectively. Based on the table, we find that the iterative refinement
continuously improves the quality of the generated tests. The average time cost of ChatTester
is around 99.0 seconds, where the initial test generator takes 15.0 seconds while each iteration
in the iterative refiner takes 30.0 seconds on average. In fact, the majority of the costs come
from the latency of querying the ChatGPT API (i.e., around 10s in our environment) and the test
compilation/execution. Therefore, the efficiency of ChatTester could be further improved if it
is applied on locally-deployed small LLMs or with more efficient compilation optimization (e.g.,
incrementally compiling only the generated test instead of compiling the whole project).

Effectiveness Evaluation Summary: ChatTester effectively improves the correctness of
ChatGPT-generated tests by substantially reducing the compilation errors and incorrect asser-
tions in the generated tests. In particular, both the initial test generator and the iterative test
refiner positively contribute to the effectiveness of ChatTester.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 76. Publication date: July 2024.



76:18 Yuan, et al.

Table 9. Generalization of ChatTester

Metric (%)

CodeLlama-34B CodeFuse-34B

𝐶𝑜𝑑𝑒𝐿𝐿𝑎𝑚𝑎 𝐶𝑜𝑑𝑒𝐿𝑙𝑎𝑚𝑎ChatTester 𝐶𝑜𝑑𝑒𝐹𝑢𝑠𝑒 𝐶𝑜𝑑𝑒𝐹𝑢𝑠𝑒ChatTester
Syntactical Correct 93.0 93.0 72.0 89.0
Success Compilation 22.0 43.0 1.0 24.0
Passing execution 3.0 21.0 0.0 11.0

Table 10. Statement and Branch Coverage in Project-level Evaluation

zappos-json tabula-java jInstagramCoverage (%) SC BC SC BC SC BC
AthenaTest 7.2 1.3 3.2 0.4 18.9 1.6
EvoSuite 30.5 16.1 15.2 9.9 45.3 13,3
ChatGPT 14.4 5.2 9.4 5.0 38.6 12.7
ChatTester 35.1 21.5 15.6 9.2 41.8 13.4

6.2.2 RQ6: Generalization Evaluation. Table 9 presents the effectiveness of ChatTester on differ-
ent LLMs. Overall, ChatTester can consistently improve the quality (e.g., syntactical, compilation,
or execution correctness) of the tests generated by different open-source LLMs. For the studied LLMs
CodeLlama-Instruct-34B and CodeFuse-34B, ChatTester achieves 21.0%/ 23.0% improvement in
compilation rate and 11.0% /18.0% improvement in passing execution rate. The results indicate
that the approach of ChatTester can be generalized to different LLMs and is not specific to the
commercial LLM ChatGPT. The average time costs of CodeLlama-Instruct, 𝐶𝑜𝑑𝑒𝐿𝑙𝑎𝑚𝑎ChatTester,
CodeFuse and 𝐶𝑜𝑑𝑒𝐹𝑢𝑠𝑒ChatTester are 5s, 105s, 5s and 90s.

Generalization Evaluation Summary: ChatTester can be generalized to different LLMs
and consistently improve their effectiveness of test generation.

6.2.3 RQ7: Project-level Evaluation. We present the results of coverage comparison and the user
study results of readability and usability as follows.
Project-level Coverage. Table 10 shows the statement coverage (“SC”) and branch coverage (“BC”)
of the tests generated by ChatTester and all the baselines over the entirety of each project. We
can find that ChatTester achieves comparable and even better coverage than the baselines in the
project-level evaluation setting. We further inspect some cases and analyze the potential reason for
the observation. In particular, compared to the deep-learning-based technique AthenaTest and the
basic ChatGPT, ChatTester is capable of generating more compilable and executable tests, thus
inherently resulting in higher coverage; for the search-based technique Evosuite, although it is
able to generate more executable tests, its generated tests fall short in containing unnatural inputs
and thus cannot reach some specific statements.
Readability and Usability. Figure 10 presents the overall score distribution of the readability and
usability. In particular, A to E groups represent different participants, and X/Y/Z represent different
test generation techniques. As shown in the figure, all the participants find that ChatTester
generate more tests with better readability and usability than baselines. In addition, based on
the scoring details of naming intuitiveness, code layout, assertion quality, and adoption efforts,
we find that participants consider the ChatTester-generated tests with more intuitive naming
styles and more structured code (thus with better readability), and participants also consider the
ChatTester-generated tests with better assertions and less adoption efforts (thus with better
usability).
Project-level Evaluation Summary: ChatTester consistently outperforms baselines in
coverage, readability, and usability in the project-level evaluation setting.
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Fig. 10. Score Distribution of Readability and Usability

7 THREATS TO VALIDITY

(i) One threat lies in the randomness in ChatGPT. To alleviate this issue, we repeat our experiments
three times and present the average results when automatically evaluating the effectiveness of
ChatTester. We do not repeat our experiments in the empirical study, due to the large manual
efforts involved in the user study. However, we actually observe similar correctness results of
the tests generated by ChatGPT on two different datasets (Table 2 and Table 7), indicating the
consistency of our results. (ii) Another threat is in the benchmarks used in this work. Our findings
might not generalize to other datasets. To eliminate this issue, we construct our datasets to include
more high-quality projects and diverse focal methods and test methods, and we evaluate the
proposed ChatTester on a different evaluation dataset to avoid overfitting issues. In addition, to
evaluate the generalization capability of ChatTester on different programming languages, we
further perform an additional evaluation of ChatTester on a Python dataset, HumanEval [38].
In particular, we leverage ChatTester to generate tests for 164 Python methods in HumanEval.
We observed the consistent effectiveness of ChatTester by improving the successful execution
rate of ChatGPT-generated tests from 31.7% to 43.2%. The results indicate the generalization of
ChatTester to other programming languages. (iii) Another threat is the potential data leakage
of the manually-written tests being part of the training data in ChatGPT, which might lead to
the overestimation of ChatGPT’s capability in test generation. In fact, we find there is quite long
Levenshtein edit distance between the ChatTester-generated tests and manually-written tests (i.e.,
average of 1,027 characters and median of 609 characters), and only 5% of ChatTester-generated
tests have less than 200-characters Levenshtein distance to manually-written ones, implying that
directly copying from training data might be less prevalent in our benchmark.

8 RELATEDWORK

8.1 ChatGPT for SE tasks

ChatGPT has attracted wide attention due to its outstanding capability of solving various tasks [30,
40, 47, 88], including the SE tasks [13, 25, 71, 77], e.g., program repair [71, 82], code generation [25,
32, 66]. Our work performs the first study to explore the ChatGPT’s ability for unit test generation;
and then proposes ChatTester, a novel ChatGPT-based unit test generation approach, which
improves the quality of the tests generated by ChatGPT.
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8.2 LLMs for Test Generation

One typical category of LLM-based test generation techniques mainly regard test generation as a
neural machine translation problem [54, 73] (i.e., from the focal method to the corresponding test
prefix or the test assertion) and fine-tune the LLMs on the test generation dataset. For example,
AthenaTest [73] fine-tunes BART [14] on a test generation dataset where the input is the focal
method with the relevant code context while the output is the complete test case. Our results show
that ChatGPT outperforms AthenaTest in generating tests of higher correctness and coverage.

More recently, given the rapid development of instruction-tuned LLMs, there are an increasing
number of test generation techniques that leverage instructed LLMs via suitable prompts instead of
fine-tuning models [21, 22, 81]. For example, breaking down complex tasks into smaller tasks (such
as chain of thought reasoning [80] and tree of thought reasoning [85]) has been demonstrated as
effective prompting strategies, which are also high-level ideas inspiring ChatTester. Nashid et
al. [53] propose a retrieval-based prompt construction strategy that queries Codex with few shots
to generate test assertions. Different from their work, our work focuses on the zero-shot learning
scenario and generates complete tests of both test prefixes and test assertions. CODAMOSA [46]
enhances traditional search-based techniques by using tests generated by Codex to escape from the
“plateaus” during the search procedure. In fact, ChatTester is complementary to CODAMOSA,
since ChatTester aims at generating one test for the given focal method via LLM while CO-
DAMOSA aims at generating a set of tests for the given module via the combination of LLM and
search-based algorithm. Therefore, ChatTester could provide higher-quality of tests as the seed
for CODAMOSA during its search procedure. LIBRO [43] leverages Codex to generate tests for
the given bug report. Different from LIBRO, our work focuses on the test generation scenario
without bug reports. This September, Li et al. [48] propose differential prompts to generate failure-
inducing test inputs via ChatGPT, which focuses on generating test inputs via LLMs, while our
work focuses on generating a complete unit test case of both test inputs and test code (e.g., the
test prefix). Ring System [42] and TestPilot [69] also employ LLM for test generation and bug
repair, respectively. Ring System adopts a one-turn approach focusing on a specific code snippet,
whereas our tool, ChatTester, leverages iterative refinement through multi-round dialogues
with LLMs and incorporates additional code context for enhanced accuracy. TestPilot differs from
ChatTester in its feedback mechanism by searching for code snippets using the focal methods. In
contrast, ChatTester extracts and utilizes additional contextual information from error messages
for refining test generation.

9 CONCLUSION

In this work, we perform the first empirical study to evaluate ChatGPT’s capability of unit test
generation, by systematically investigating the correctness, sufficiency, readability, and usability of
its generated tests. We find that the tests generated by ChatGPT still suffer from correctness issues,
including diverse compilation errors and execution failures (mostly caused by incorrect assertions);
but the passing tests resemble manually-written tests by achieving comparable coverage, readability,
and even sometimes developers’ preference. Inspired by our findings above, we further propose
ChatTester, which leverages ChatGPT itself to improve the quality of its generated tests. Our
evaluation demonstrates the effectiveness of ChatTester by generating 34.3% more compilable
tests and 18.7% more tests with correct assertions than the default ChatGPT.
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