KG4CraSolver: Recommending Crash Solutions
via Knowledge Graph

Xueying Du"
Fudan University
Shanghai, China

Xin Peng"
Fudan University
Shanghai, China

ABSTRACT

Fixing crashes is challenging, and developers often discuss their
encountered crashes and refer to similar crashes and solutions
on online Q&A forums (e.g., Stack Overflow). However, a crash
often involves very complex contexts, which includes different
contextual elements, e.g., purposes, environments, code, and crash
traces. Existing crash solution recommendation or general solution
recommendation techniques only use an incomplete context or
treat the entire context as pure texts to search relevant solutions
for a given crash, resulting in inaccurate recommendation results.

In this work, we propose a novel crash solution knowledge graph
(KG) to summarize the complete crash context and its solution with
a graph-structured representation. To construct the crash solution
KG automatically, we propose to leverage prompt learning to con-
struct the KG from SO threads with a small set of labeled data. Based
on the constructed KG, we further propose a novel KG-based crash
solution recommendation technique KG4CraSolver, which precisely
finds the relevant SO thread for an encountered crash by finely ana-
lyzing and matching the complete crash context based on the crash
solution KG. The evaluation results show that the constructed KG
is of high quality and KG4CraSolver outperforms baselines in terms
of all metrics (e.g., 13.4%-113.4% MRR improvements). Moreover, we
perform a user study and find that KG4CraSolver helps participants
find crash solutions 34.4% faster and 63.3% more accurately.

CCS CONCEPTS

« Software and its engineering — Maintaining software; Soft-
ware evolution; Software testing and debugging.

KEYWORDS

Crash Solution Recommendation, Knowledge Graph, Stack Over-
flow
“X. Du, Y. Lou, M. Liu, X. Peng, and T. Yang are with the School of Computer Science

and Shanghai Key Laboratory of Data Science, Fudan University, China.
M. Liu is the corresponding author (liumingwei@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12...$15.00
https://doi.org/10.1145/3611643.3616317

Yiling Lou*
Fudan University
Shanghai, China

Mingwei Liu* "
Fudan University
Shanghai, China

Tianyong Yang"
Fudan University
Shanghai, China

ACM Reference Format:

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang. 2023.
KG4CraSolver: Recommending Crash Solutions via Knowledge Graph. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °23),
December 3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3611643.3616317

1 INTRODUCTION

Software crashes have been widely recognized as a type of serious
bug and should be fixed in a high priority. Resolving crashes is
challenging and time-consuming [22, 23, 66], and developers of-
ten turn to online Q&A forums for help (e.g., Stack Overflow) by
discussing their encountered crashes or referring to other similar
crashes and solutions. As shown by previous work [44], crash bugs
have been actively discussed on Stack Overflow (SO), i.e., 7% out
of 2.65 million Java-related SO threads are about crashes, which
provide a large amount of crash solution knowledge for developers.

However, describing and understanding a crash often involve
very complex contexts. In addition to the code and the reported
crash traces, precisely diagnosing the root cause of a crash also
relies on the environment that the project is configured with, the
purpose of the developers writing the code, and the symptom of
the crash. Therefore, developers often write very lengthy posts
to describe their encountered crashes. Based on our statistics, the
average length of the Java exception-related SO threads is around
320 words. As a result, it takes developers a lot of time to search
and read many relevant SO threads, among which they further find
the one that shares the most similar crash context as theirs and
then fix their own crash based on its solution.

To alleviate the manual efforts in navigating through so many
lengthy SO threads and to help developers quickly find the solution
for their encountered crash, researchers have proposed to auto-
matically recommend crash solutions by finding the SO thread
that discusses the same/similar crash context as the encountered
one [23, 44, 45, 66]. Existing crash solution recommendation work
identifies relevant SO threads for a given crash by only searching
with the code or the crash trace, which have not considered other
important elements in contexts (e.g., environment, symptom, or
the purposes of the project). However, these contextual elements
are also essential for developers to diagnose the crash. For exam-
ple, two crashes with the same code snippets and the same crash
traces could be caused by different reasons if they involve different
environments (e.g., using different versions of the library). As a

https://doi.org/10.1145/3611643.3616317
https://doi.org/10.1145/3611643.3616317

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

result, using such an incomplete context to identify relevant SO
threads could be inaccurate. In addition, for existing techniques
that recommend solutions for general software engineering prob-
lems by mining online Q&A forums [20, 73], they actually have
limited effectiveness in crash solution recommendation, since they
concatenate different crash contextual elements (e.g., code and nat-
ural language descriptions) into a long textual query and such a
purely text matching would also lead to inaccurate recommendation
results.

To address these limitations, we propose a novel crash solu-
tion knowledge graph (KG), which summarizes the complete crash
context and its solution with a graph-structured representation.
In our crash solution KG, the nodes represent different elements
in the crash context while the edges represent the relationships
between elements. To construct the crash solution KG automat-
ically, we propose to leverage prompt learning to construct the
KG from SO threads with a small set of labeled data. Based on the
constructed KG, we further propose a novel KG-based crash solu-
tion recommendation technique KG4CraSolver, which precisely
finds the relevant SO thread for an encountered crash by finely
analyzing and matching the complete crash context based on the
crash solution KG. The benefits of recommending crash solutions
based on the KG are as follows. First, compared to existing crash
solution recommendation techniques that only use code or crash
trace in the crash context, our crash solution KG is able to represent
a complete crash context with all the different elements. Second,
compared to existing general solution recommendation techniques
that simply concatenate different contextual elements into a long
textual query, our crash solution KG represents the crash context
in a more structured way by representing different elements and
their relationships with nodes and edges. Therefore, compared to
these techniques, our structured and comprehensive representation
of crash contexts enables fine-grained and precise context match-
ing between a given crash context and candidate SO threads. In
addition, with such a KG, KG4CraSolver could further explain each
recommended solution with matching details (e.g., the matching
scores in different elements) and summarize the solution in a more
concise way, which increases the usability and readability of the
recommended solution for developers.

We construct a crash solution KG with 963,334 nodes and 1,626,101
edges for 245 common Java exceptions from 71,592 SO threads and
further implement KG4CraSolver as an automatic tool. We first eval-
uate the effectiveness of our KG construction, and find that each
key step achieves high precision. For example, our construction
approach classifies different sentences (e.g., symptoms or reasons)
in the crash context with 91.6% precision and 91.2% recall, and it
further extracts fine-grained phrases (e.g., environment) from clas-
sified sentences with 0.855 BLEU and 0.843 EM (Exact Match). We
then evaluate the effectiveness of solution recommendation on a
newly-constructed benchmark of 855 crash bugs from SO duplicate
question records. The results show that KG4CraSolver outperforms
five baselines on the MRR (Mean reciprocal rank) and Hit@10. Fur-
thermore, to evaluate the practical usefulness of KG4CraSolver for
developers, we then conduct a user study by asking 10 participants
to find solutions for crash bugs with KG4CraSolver. The results
show that compared to using baselines, the participants could find
solutions more accurately (+63.3%) and faster (+34.4%) with the help

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang

of KG4CraSolver. Moreover, we survey the participants and their
feedback shows that they consider the solution summary generated
by KG4CraSolver as complete, concise, easy to read, and useful.
In summary, this paper makes the following contributions.
¢ A new knowledge graph for crash solutions that sum-
marizes the complete crash contexts and solutions in a struc-
tured and comprehensive way;

¢ A novel approach for crash solution KG construction
that leverages prompt learning to automatically construct
the crash solution KG with a very small set of labeled data;

e A novel crash solution recommendation technique
KG4CraSolver that analyzes the complete context of an
encountered crash and finds the relevant SO thread in a
fine-grained manner based on the crash solution KG;

e An extensive evaluation that demonstrates the effective-
ness of our KG construction and crash solution recommenda-
tion, and also shows the practical usefulness of KG4CraSolver
with a user study.

2 CRASH SOLUTION KG DEFINITION

In this section, we introduce how we define our crash solution KG.
In particular, we first perform a pilot study on a small dataset of
SO threads to understand what kind of information is commonly
included in crash-related SO discussions; and then we design our
KG for crash solution based on the results.

Pilot study. We first collect a dataset of crash-related SO threads.
A thread includes a question with the corresponding answers. In
particular, from SO data dumps [2], we randomly sample 100 threads
that (i) are related to crash solution with one specific exception type
in their question titles or tags, and (ii) have an accepted answer.

Similar to previous work [37], we annotate all information units
in the threads (i.e., the title, tags, and all sentences in the question
and answer) based on what kind of information it could provide
to describe the crash context and solutions (i.e., crash descriptive
elements and solution descriptive elements). Our annotation follows
an open coding procedure [27], which involves three of the authors
in discussion. We start with three codes from previous work [37], i.e.,
erroneous implementation, error type, and error occasion. During
the annotation process, if none of the existing codes is applicable,
we create new codes or refine the names and definitions of existing
codes after discussions.

In this way, we summarize nine elements that cover the essential
crash descriptive information and solution descriptive information
in crash-related threads. Table 1 further shows the detailed defini-
tions and examples of each element. An element of a text type is
described by natural language, and an element of a non-text type
is described in structured domain-specific language (e.g., code). In
particular, Purpose, Symptom, Environment, Erroneous Code, Crash
Trace, and Exception Type are elements extracted from the question
in SO threads, and the others are extracted from the answer.

KG schema. Based on these elements, we further design the KG
for crash solutions. Fig. 1 shows the conceptual schema of our
KG. In particular, the KG consists of two parts: the crash scenario
knowledge (i.e., the orange part) and crash solution knowledge (i.e.,
the blue part), with the elements extracted from the question and
answer, respectively. In terms of relation connections, the elements

KG4CraSolver: Recommending Crash Solutions via Knowledge Graph

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Table 1: Definitions of Elements in Crash Solution KG

Name Type Definition Example
Purpose Text Describe the task that the developer wants to complete, Tam trying to implement a chat application in Java using UDP for
serving as the background of the crash bug. multiple clients.
Symptom Text Describe the situation when the crash occurs, which When I run antlr TestParser.g4 && javac *java the parser code gets
includes the operation before the crash occurs, program generated and compiled. When I run grun TestParser testRule -gui I
running status, and unexpected program outputs. get the error.
Environment Text Describe the environment where the crash bug occurs, such java, spring, spring-security, spring-boot, spring boot version
as programming languages, operating systems, and libraries. 1.3.7.RELEASE
Reason Text Describe the root cause of the crash. In your class User, you don’t have a name property.
Solution Step Text Describe the solution steps of the crash. The problem is solved by just undeploying and redeploying the
respective portlet in liferay.
Erroneous Code | Non-text Buggy code snippets that trigger the crash. public class Cloning { Cloning c=new Cloning(); ...
Solution Code Non-text Correct code snippets that fixes the crash. static Cloning c=new Cloning();
Crash Trace Non-text | Error messages and stack traces that are reported with the Exception in thread “main” java.sqL.SQLException: Can’t create table
crash. ‘Sensors_db.one’ (errno: 121) at com.mysql.jdbc.SQLError...
Exception Type | Non-text Exception type of the crash. NullPointerException

related to the crash scenario are centered around the concept node
[Crash Bug], and the elements related to the crash solution are all
connected to the concept node [Solution]. The “solved by” rela-
tion connects [Crash Bug] to [Solution]. Moreover, the sentences
describing the causes of the exception [Reason] or the sentences de-
scribing the symptoms of the exception [Symptom] are connected
by “succession” relations; similarly, the sentences describing the
[Solution Step] are connected by “followed by” relations.

succession

succession

) T ==}

Reason

[Purpose

eontexd explain followed by

has
purpose

correspond (0

has erroncous include Solution

Step

Solution

context
of
Crash Solution |

Solution
Code Knowledge /J

provide

Crash Scenario
Knowledge

Figure 1: Conceptual Schema of Crash Solution KG

3 CRASH SOLUTION KG CONSTRUCTION

In this section, we propose an automated approach to construct
the crash solution KG from SO threads. The key challenge in con-
structing such a KG from the massive online corpus is to precisely
identify different elements in each SO thread. Existing sentence clas-
sification and phrase extraction techniques are all learning-based
approaches and require a large amount of labeled data for model
training. However, in our task, there is no high-quality and ready-
made labeled data, and it is time-consuming to manually annotate
such a large training dataset. To this end, we propose a few-shot
learning-based approach for crash solution KG construction, which
leverages prompt learning to precisely identify different elements
in SO threads with a small set of labeled data. Fig. 2 shows the
overview of our KG construction approach.

Step 1 (Section 3.2): Given a large number of SO threads, we
first identify high-quality crash-related threads, which serve as the
input of the KG construction.

Step 2 (Section 3.3): We then leverage template-based rules to
identify non-text elements (i.e., crash trace, erroneous code, and
solution code) from the question and the answer of each thread.

Step 3 (Section 3.4): We then identify crash descriptive sentence
from the question paragraphs and identify solution descriptive sen-
tence from the answer paragraphs by utilizing prompt learning for
sentence classification.

Step 4 (Section 3.5): We further extract crash descriptive phrases
(i.e., purposes and environments) from crash descriptive sentences
identified in Step 3.

After all the elements have been extracted from SO threads,
we add them to the crash solution KG and establish the relevant
relationships according to the schema in Fig. 1.

Crash-related Thread Crash ion Descriptive crash Crash Descriptive
1 ion answers S Classification descriptive *| Phrase Extraction
symptom, .
reason, purpose,
N environment
SO threads solution step
% . Non-text ?Od‘f"ag" .
N answers exception trace Crash
= stackoverflow Gt Solution KG
Analysis aaon

Figure 2: Overview of Crash Solution KG Construction

javax.el.PropertyNotFoundException: Property ‘foo’ not found on type

com.example.Bean Title
Asked 11yearsago Modified 2 years, 8 months ago Viewed 139k times
| have results from Text Erroneous Code

31 Query query = session.createQuery("From Pool as p left join fetch p.poolQuestion as s");

query and | would like to display it on JSP.

The error is: Text Crash Trace

SEVERE: Servlet.service() for servlet appServlet threw exception
Jjavax.el.PropertyNotFoundException: Property 'answer' not found on type com.pool.app.doma

at javax.el.BeanELResolver$BeanProperties.get(BeanELResolver.java:214)

at javax.el.BeanELResolver$BeanProperties.access$400(BeanELResolver. java:191)

at javax.el.BeanELResolver.property(BeanELResolver.java:360)

jsp st javabeans el propertynotfoundexception

6 Answers Sorted by: Highest score (default) *

javax.el.PropertyNotFoundException: Property 'foo’ not found on type com.example.Bean

94
This literally means that the mentioned class com.example.Bean doesn't have a public (non-static!)
getter method for the mentioned property foo . Note that the field itself is irrelevant here!

The public getter method name must start with get, followed by the property name which is
Vg capitalized at only the first letter of the property name as in Foo . Text

public Foo getFoo() {
return foo;

Solution Code

3

Figure 3: Example of A Crash-related Thread

3.1 Running Example

In this section, we illustrate how we construct the KG with a run-
ning example. Fig. 3 shows a SO thread [16], which discusses how to

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

I'have loop and I would like to display
results from poolQuestion table (which is
Join table)

succession I have results from query and I

would like to display it on JSP

correspond to

display it on JSP

has
purpose

has erroneous code

Query query =

accompanied by
ession.createQuery .. P Y

display results from
poolQuestion table

Org.apache.jasper.JasperException?
An exception occurred ...

succession .
The value that i want to succession
display is 'answer' The above code doesn't
works.
environment

PropertyNotFoundException

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang

Note that the field itself is irrelevant here

This literally means that the mentioned class
com.example.Bean doesn't have a public (non-static!)

succession

The public getter method name must start with
get, followed by the property name which is capitalized at only
the first letter of the property name as in Foo.

include

provide context
public Foo getFoo() { of
return foo;}

followed
by

For boolean (not Boolean!) properties, the getter
method name must start with is instead of get.

Figure 4: An Example of Crash Solution KG

fix a PropertyNotFoundException exception. The accepted answer
shows that this exception occurs as the program accesses a prop-
erty without public getter methods. Fig. 4 shows part of the crash
solution KG constructed for this example, where orange ellipses,
and blue ellipses denote crash descriptive elements, and solution
descriptive elements, respectively.

After identifying the example in Fig. 3 as a crash-related thread
in Step 1, we then extract the non-text descriptive elements from the
thread in Step 2. For example, the crash trace “org.apache.jasper.Jas-
perException: An exception occurred processing JSP page /WEB-INF/vie-
ws/home.jsp at line 217, the erroneous code “<c:forEach items =“$pools”
var="pool”>...”, and the solution code “public Foo getFoo() {return
foo;}” are extracted as non-text descriptive elements in Fig. 4. In Step
3, the descriptive sentences are classified into the symptoms (e.g.,
“The above code doesn’t works.”), reasons (e.g., “Note that the field
itself is irrelevant here...”), and solution steps (e.g., “The public getter
method name must start with get...”) with our prompt learning-based
sentence classification. In Step 4, the key phrases in the purpose
(e.g., “display it on JSP”) and environments (e.g., JSP”) are further
extracted from crash descriptive sentences with our learning-based
phrase extraction. In this way, we extract fine-grained crash sce-
nario knowledge and crash solution knowledge to construct the
KG, which then can be used to support KG-based crash solution
recommendation (in Section 4).

3.2 Crash-related Thread Identification

This step extracts high-quality crash-related threads from SO data
dumps [2], as the input for constructing the crash solution KG.
In this work, we focus on crash bugs in Java programs given
their prevalence [44, 66]. With the following criteria, we select
the threads that: (1) have “java” in the title or tags, (2) have “ex-
ception” or “error” in the title or tags, (3) have an accepted answer,
(4) have a positive vote for its question, and (5) contain at least
one specific exception type (e.g., NullPointerException) in the given
exception type list. To build a pool of common Java exception types,
we systematically parse 35,773 Java libraries from Maven Central [5]
according to the Libraries.io dataset [4] and JDK 1.8 [13] and extract
the names of all classes that are a subclass of java.lang.Exception
or java.lang.Error. To guarantee the quality of the solutions, we
only keep the accepted answers in threads. We further group the
crash-related threads of the same exception type together.

3.3 Non-text Content Analysis

For a crash-related thread, we first extract its non-textual elements
(i.e., crash traces, erroneous code, and solution code) from the
non-textual content. First, we use BeautifulSoup [3] to parse the
question and the answer from HTML format to clean text and ex-
tract the non-text content wrapped by <pre><code></code></pre>
or <blockquote></blockquote>. We then classify the extracted con-
tent into one of three categories, namely code snippets, crash
traces, and others. The classification is based on the list of reg-
ular expressions proposed by Liu et al. [37] in their previous work
on SO content analysis. The code snippets identified from the
question are erroneous code, while the code snippets identified
from the answer are solution code as shown in Figure 3. From
the identified crash traces, we further identify the exception mes-
sage by matching with regular expressions. For example, from the
crash trace shown in Figure 3, we identify the exception message
“javax.el.PropertyNotFoundException: Property ‘answer’ not found on
type com.pool.app.domain.Pool”.

We replace the recognized non-text content with a placeholder
-CODE- and then split the question and the answer into sentences us-
ing spaCy [7] for the following sentence classification (Section 3.4).
Where necessary, a “” was added after -CODE- to ensure that the
following sentence splitting is correct.

3.4 Crash/Solution Descriptive Sentence
Classification

In this step, we identify crash/solution descriptive sentences from
the remaining textual content in the thread via a prompt-based text
classification model. We then introduce the definition of the task
(Section 3.4.1), the design of the prompt-based learning model used
(Section 3.4.2), and the concrete implementations (Section 3.4.3),
respectively.

3.4.1 Task Definition. For sentences in crash-related threads, we
classify them into one or more of the following five categories
(i.e., Purpose, Symptom, Reason, Solution Step, and Others). The defi-
nitions for the first four categories are shown in Table 1, and the
sentences (e.g., “Thanks.” or ‘T was finally able to solve this.”) without
any concrete information on crashes and solutions are categorized
as Others. In particular, a long sentence might contain information
of multiple categories. Therefore, we formulate our sentence iden-
tification problem as multiple binary classification tasks, which
separately train a binary text classifier for each of the four cate-
gories (except Others) and yield binary outputs y of positive or

KG4CraSolver: Recommending Crash Solutions via Knowledge Graph

negative. Specifically, we apply the text classifiers on sentences in
the question to identify Purpose and Symptom categories and apply
the text classifiers on sentences in the answer to identify Reason
and Solution Step categories. Sentences that do not fall into any of
these four categories would be regarded as in Others category and
would be filtered out then.

3.4.2 Model Design. Fine-tuning a pre-trained language model
(PLM) for downstream tasks (e.g., text classification [25, 34, 71],
machine translation [60], named-entity detection [57]) has achieved
great success and been widely adopted in various domains [32, 65].
However, to achieve good results on downstream tasks, it still
requires enough labeled data to fine-tune the PLMs in a supervised
way.

Prompt-based learning is a new paradigm in the NLP field for
using knowledge in PLMs [42]. Its idea is to narrow the gap between
the downstream tasks and the pre-training task by converting the
training objective of downstream tasks into a similar form as the
pre-training stage, i.e., the MLM objective [54]. As shown in Fig. 5, a
natural language prompt (i.e., [X] I think it [Z] the reason for this the
problem.) is added to the input sentence to make the input format
identical to the pre-training stage and then the PLM will predict
the mask token as the pre-training task. Prompt-based learning
methods generally require much less training data compared to
traditional supervised learning and have been widely used for few-
shot learning or even zero-shot learning [24]. Therefore, we build
our text classifiers based on prompt-based learning, which only
requires a small set of labeled data for fine-tuning.

CLS
X This literally means that the mentioned

(X] class com.example.Bean doesn't have a

prompt public (non-static!) getter method for the
. mentioned property foo.

X’]
Answer I think it | [Z] |the reason for the problem.
answ

-SEP
2] | :
| filled with predicted answer

Output I

—-> PLM ——>[ils][isrll’t][]z

A2 A2
;rnusevsver z* @————-{ Reason] [Others] y

Figure 5: An Example of Prompt-based Text Classification

We then detail how our prompt-based sentence classifiers work
with the example in Fig. 5. The original input x is modified with a
template into a textual string prompt x” that has some unfilled slots,
and then the PLM probabilistically fills the unfilled information to
obtain a predicted answer z, from which the final output y can be
derived. In Fig. 5, the input x is the sentence to be classified, and
the output y is whether the sentence is Reason or not. The prompt
function fprompt(x) is a function that converts the input into a
specific form by inserting the input x and adding a slot [Z] where
answer z may be predicted and filled in by the pre-trained model.
The predicted answer z will later be mapped into y, corresponding
to different class labels. For example, when the predicted answer
is a word expressing affirmation, e.g., “is”, the sentence x will be
classified as Reason, and when the predicted answer is a word

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

expressing negation, e.g., “isn’t,” the sentence will be classified as
Others.

For each category of classifier, we define the corresponding
fprompt (x) to modify the input text x into a prompt, ie., x’ =
fprompt (x). It contains three parts: [X] for inserting the input x, a
textual string for the prompt, and a slot [Z] for the PLM to fill later.
o Purpose: [X] I think that [Z] is the reason for this problem.

o Symptom: [X] I think this [Z] the situation.
o Reason: [X] I think it [Z] the reason for this the problem.

o Solution Step: [X] I think it [Z] a solution for exception repair.
We map each sentence class label we defined to a set of label

words or phrases. The true answer z* is defined as “is” for the

positive class label and “is not” or “isn’t” for the negative class label.

For the example in Fig. 5, the true answer for the prompt is “is”,
and the sentence is classified into Reason.

3.4.3 Model Implementation and Dataset Construction. We imple-
ment the prompt-based text classifier by using OpenPrompt [6], an
open-Source framework for prompt learning with two thousand
stars on GitHub. We build our approach based on the BERT base
model (uncased) [21], one of the most representative PLMs. We
fine-tune the classifiers on our training dataset with the following
hyperparameters: CrossEntropyLoss as loss function, AdamW as
optimizer, learning rate 0.0001, and 10 training epochs.

To construct the training dataset, we randomly select 50 Java
crash-related threads (from Section 3.2) and manually annotate
the sentences in these threads into the five categories. Note that
a sentence may be classified into multiple categories if it contains
diverse information. As a result, we obtain 30, 133, 55, 87, and 103
sentences for Purpose, Symptom, Reason, Solution Step, and Others
respectively. We separate the labeled sentences obtained from the
question (i.e., Purpose, Symptom, Others) and those obtained from
the answer (i.e., Reason, Solution Step, Others). For each classifier,
its positive samples consist of annotated data for the correspond-
ing category, while the negative samples consist of all remaining
sentences in the question or answer. The whole labeling process
takes about 4 man-hours. Such manual costs are much less than
traditional supervised learning and fine-tuning methods, e.g., pre-
vious work takes 175 man-hours to label 2,278 SO threads for the
SOSum dataset construction [28].

3.5 Crash Descriptive Phrase Extraction

In the last step, we extract the crash descriptive sentences (i.e., Pur-
pose and Symptom) from the question. In fact, some crash descriptive
sentences contain fine-grained descriptive phrases that summarize
the purpose (verb-object phrase) and environment (noun phrase)
of a crash. For example, the phrases “JSP” and “display it on JSP”
in the sentence ‘T have results from query and I would like to display
it on JSP” summarize the environment and purpose, respectively.
Compared with the whole sentence, these descriptive phrases often
contain fewer noise words, which is beneficial for more accurate
matching in the subsequent solution recommendation. Therefore,
in this step, we further extract crash descriptive phrases (i.e., pur-
poses and environments) from the crash descriptive sentences. We
then introduce the task definition (Section 3.5.1), the design of the

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

EQA-based phrase extraction model (Section 3.5.2), and the concrete
implementations (Section 3.5.3), respectively.

3.5.1 Task Definition. In this step, we focus on extracting the de-
scriptive phrases that are related to purposes and environment
from the crash descriptive sentences. We currently do not extract
phrases for other elements such as symptoms and reasons, given
their complexity and diversity in expression. In summary, the task
in this step is to extract continuous spans that represent purposes
and environment from a given sentence.

3.5.2 Model Design. Our phrase extraction task is actually a named
entity recognition problem, which is often tackled by a sequence
tagging model based on a PLM model (such as BERT) [35, 41, 55].
However, it requires a large amount of labeled data to train a se-
quence tagging model since the model needs to predict the tag for
each token in the sentence [17]. Our idea is to convert the phrase
extraction task into an extractive question-answering task, which
aims finding an answer (i.e., a segment of text, or span) in a given
context paragraph for a specific question [61]. In this way, the
extractive question answering task could be done by designing
appropriate questions as prompts for pre-trained models. Some re-
searchers have designed a BERT-based EQA model [18, 49], which
combines the question and the context paragraphs as the input and
predicts the start token and end token of the answer span with a
confidence score as the output. These EQA models have been pre-
trained in large-scale question-answering datasets, e.g., Stanford
Question Answering Dataset (SQuAD) [51] with 107,785 question-
answer pairs on 536 articles, which have good performance and
generalization in extractive question answering. As shown in Fig-
ure 6, based on the trained EQA model, we combine the crash
descriptive sentence (as the context) and some prompts designed
specifically for the descriptive phrases (as the question) as the input
and take the output of the EQA model as the phrase extraction
results. In the example illustrated in Figure 4, we performed phrase
extraction on the sentence ‘T have loop and I would like to display
results from poolQuestion table (which is Join table)”, yielding the
extracted purpose phrase “display results from poolQuestion table”.
Note that the extraction result of an EQA model is the special token
[CLS] (the start of a sentence) representing that the model cannot
find any answer span from the given context. In this way, we can
obtain more flexible extraction results without a large amount of
annotated training data.

CLS [CLS] would like
[What do I want to do? | 0.)(0.) (0.)0 0. (0] 0] [0] 0.
SEP

I have loop and I would like to display

|
|
|
|
|
|
| to display results from
|
|
results from poolQuestion table (which is :
|
|
|

! I
| i
! I
! I
| i
! I
| i
| 0.) 0. (100 [0] 0 [0 o }
! I
| i
! I
! I
! i

Join table) Qheston | [table [SEP]
SEP 0.)00 [0)[1 (o]0 [0]lo.
I g S L_____ vy ——
context | '———- EQA model ————— I start label end label

Figure 6: An Example of EQA-based Phrase Extraction

In particular, we design the following question prompts.
e Environment:
— What are the tools and their versions?

— What are the environment, using tools and their versions?

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang

— What are the environment?
— What are the using tools?

o Purpose:
— What am I trying to do?

- What do I want to do?
— What is the purpose of the project?

— What is the goal of the project?

To ensure the quality of extracted phrases, we filter out: (1) the
phrases with low confidence score (i.e., less than 0.1); (2) the phrases
without alphabetical characters; (3) the environment phrases with
more than five words; and (4) the phrases with the placeholder
token -CODE- or the words “Exception”, “Error”, or “Code”.

3.5.3 Model Implementation and Dataset Construction. To achieve
better performance, we propose to fine-tune the EQA model with a
few data samples (i.e., few-shot learning) instead of directly using
EQA model with the designed question prompts (i.e., zero-shot
learning). To this end, we build a training dataset for the phrase
extraction task by further annotating the sentence classification
dataset (constructed in Section 3.4.3). Each sample should include
three aspects of information: the context (original sentence to be
extracted), the question prompts, and the extracted answer span.
To enhance the data and allow the model to fully learn different
question prompts, we apply different question prompts to the same
sentence to get different training data. As a result, the dataset
includes 120 and 616 samples for purpose phrases and environment
phrases, respectively.

We implement the phrase extraction model based on Trans-
former [12], a Python library providing APIs to easily download
and to train state-of-the-art pre-trained models. We choose the
fine-tuned checkpoint of the pre-trained DistilBERT (i.e., distilbert-
base-uncased-distilled-squad [1]) as the base EQA model, which has
been trained on SQuAD dataset [51]. Based on it, we use the labeled
samples to further fine-tune it to obtain the final phrase extraction
model. To fine-tune the model, we use the Adam optimizer with a
learning rate of 0.0001 for a total of 10 training epochs.

4 KG-BASED CRASH SOLUTION
RECOMMENDATION

Based on the crash solution KG, we further design a crash solution
recommendation approach KG4CraSolver, which precisely iden-
tifies the relevant solutions for a given crash by analyzing and
matching the complete crash context. Fig. 7 presents the overview
of KG4CraSolver, which includes four steps, i.e., crash descriptive
element extraction, candidate solution retrieval, candidate solution
re-ranking, and solution summary. Given a crash and its corre-
sponding detailed crash description as input, KG4CraSolver first
extracts each crash descriptive element (e.g., purposes, environ-
ments, and crash traces) in the same way as the KG construction;
Second, for each crash descriptive element, KG4CraSolver leverages
BM25-based lexical similarity or BERT-based semantic similarity
strategies to retrieve candidate solutions; Third, KG4CraSolver fur-
ther re-ranks candidate solutions based on the similarity scores
of all crash descriptive elements. Lastly, KG4CraSolver generates

KG4CraSolver: Recommending Crash Solutions via Knowledge Graph

a comprehensive summary of the recommended solutions by in-
cluding the solution, crash description, and other matching details.

Exception Type Message

\ Crash Descriptive Information
BM25-based Lexical
Matching

Candidate Solution Retrieval

Crash Descriptive
Element Extraction

—
Crash Solution KG

- W
Crash Description

[o]

Developer

Recommended Solutions with Summary

Solution R Candidate Solution | Candidate BERT-based Semantic
Summary Solutions Re-Ranking Solutions Matching

Figure 7: Overview of KG4CraSolver

4.1 Crash Descriptive Element Extraction

Given a crash and its crash description (e.g., example in Fig. 3)
as input, this step extracts all the crash descriptive elements via
the same method as Section 3.3 to Section 3.5. In particular, we
extract the following crash descriptive elements, including excep-
tion type, title, purpose, symptom, environment, erroneous code,
exception type message, and crash trace, which are then used in
the subsequent candidate solution retrieval and re-ranking.

4.2 Candidate Solution Retrieval

In this step, KG4CraSolver leverages each extracted crash descrip-
tive element to retrieve relevant crashes from our constructed KG
and regards their solutions as candidate solutions. First, KG4CraSolver
selects out all the crashes that have the same exception type as
the given crash. Among these crashes, we then retrieve the top-k
(k =30 in our implementation) crashes with the highest similarity
with each crash descriptive element, respectively. We then con-
sider the solutions of all these retrieved crashes as our candidate
solutions. As for the similarity calculation, we leverage two strate-
gies for different crash descriptive elements given their different
characteristics, i.e., BM25-based lexical matching for environments,
erroneous code, crash trace, title, exception type message, and
BERT-based semantic matching for symptom and purpose. We then
detail the two matching methods in Section 4.2.1 and 4.2.2.

4.2.1 BM25-based Lexical Matching. BM25 [53] has been exten-
sively used in many search engines, and it is an efficient information
retrieval method that mainly matches based on keywords. The code,
crash trace, and exception type message are often in a structured for-
mat, and environments and title are also short phrases or sentences
with concise keywords. Therefore, BM25-based lexical matching
is inherently more suitable for these crash descriptive elements.
Specifically, the BM25 similarity score between the query g and the
d is computed as Equation 1, where f(wj, q) is the word w;’s term
frequency in query ¢, IDF (wj;) is the inverse document frequency
of word w;. k and b are two free parameters, which are used to
normalize the range of term frequencies and control the influence
of document length.

IDF (w;) x f (wi,q) x (k+1)

S £ (wiq) +lox (b bx gy)

Simpmas(q.d) =)

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

We implement BM25-based lexical matching based on Elastic-
search [10], a search engine based on the Lucene library using BM25
as the default score function. Each element is cleaned with standard
preprocessing procedures (i.e., tokenization, lemmatization, and
stop word removal) before matching.

4.2.2 BERT-based Semantic Matching. Recently, BERT-based se-
mantic matching methods have become popular, which can preserve
the semantic-related sequential information [68]. The method in-
cludes a bi-encoder-based retrieval step and a cross-encoder-based
re-ranking step. In the bi-encoder-based retrieval step, it uses a
BERT-based sentence embedding model to map the query and the
documents to a high-dimensional vector space, where sentences
with similar semantics are close, and then select candidate docu-
ments based on the similarities of their vector representations. In
the cross-encoder-based re-ranking step, it uses a BERT-based sen-
tence relevance prediction model to predict the relevance between
the candidate documents and the query and re-ranks the candidates
based on their relevance. There may be a large lexical gap in the ex-
pression of purposes and symptoms with similar semantics, such as
“display the result” and “show the answers”. Therefore, BERT-based
semantic matching is more suitable for these descriptive elements.
We implement the BERT-based semantic matching based on
Haystack [11], which is an open-source framework for building
search systems based on novel NLP models (e.g., BERT). We use
the base DistillBERT (uncased) [56] in bi-encoder-based retrieval
step and cross-encoder-based re-ranking step, and fine-tune them
with 21,172 duplicate question title pairs from SO data dumps [2].

4.3 Candidate Solution Re-ranking

We re-rank candidate solutions by combining the matching scores
of all crash descriptive elements. For the input crash description c,
we calculate its final matching score with each candidate solution
s by summing up the weighted matching scores of all crash de-
scriptive elements according to Equation 2. E denotes the set of all
the crash descriptive elements (i.e., title ¢t¢I, purpose pur, symptom
sym, environment env, erroneous code ec, exception type message
em, and crash trace ct). In Equation 3, RankScore normalizes the
similarity scores of s on each descriptive element ¢ based on its
ranking i.e., Rank;(c,s). a is a constant hyper-parameter set to 3.

Score(c,s) = Z W; X RankScore;(c,s) (2)
teE
RankScore;(c,s) = 100 — a X (Rank;(¢,s) — 1) (3)

As different descriptive elements could have different importance
during matching (e.g., environment and exception type message),
we introduce weights W; in Equation 2. To avoid overfitting, we tune
these weights with an hyperparameters optimization framework
optuna [14] on a small validation set constructed by all SO duplicate
question pairs (up to 50 pairs) of 10 randomly-selected exception
types. The reranking of all candidate posts is performed according
to the final score as shown in Equation 2, and the MR metric of the
correct solution served as the objective function for tuning. Each
hyper-parameter is constrained within a range of (0,1) with a step
size of 0.01. Wyyy = 0.98, Wpyr = 0.20, Wyym = 0.29, Wenp = 0.95,
Wee = 0.58, Wep, = 0.48, and W,y = 0.16. Based on the Score(c, s)
of each candidate solutions, we return the top-n (n is set to 10

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

in our implementation) candidates with the highest scores as the
recommended solutions.

4.4 Solution Summary

For each recommended solution, KG4CraSolver generates a com-
prehensive summary of the recommended solution by including
the solution, crash description, and the matching details, to help de-
velopers better understand the recommended solution and quickly
judge the relevance of the recommended solution to the given crash
description. Fig. 8 shows an example of the final summary of the
recommended solution. In particular, the resolution summary in-
cludes basic information of a relevant post (i.e., post ID, post title,
and extra information such as the view count), crash descriptive
elements (i.e., the environment, exception type message, purpose,
and symptom), solutions (i.e., the reason and solution steps), and
the matching degree (e.g., “Environment Score: 91”) that shows the
detailed matching scores of each crash descriptive element during
solution retrieval. In this way, developers could have a clear picture
of the crash context and solutions, as well as the relevant crash
descriptive elements that match the given crash.

1d[8577545] javax.el.PropertyNotFoundException: Property ‘foo’ not found on type com.example.Bean

3] w.

Extra Info

isp. ps. table, Javabeans, jstl, el

Matching
Degree

Exception

i org.apache. jasper. JasperException: A

Javax.cl.PropertyliotFoundexception: Property 'answer” not found on type con.pooL.app.domain. ool

occurred processing 5P page /WES-TNF/vieus/hone. jsp at line 21

Symptom 1 have resuls from; -CODE-. query and | would lie to isplay it on JSP
1 have loop: -CODE-. and! | wouldlie to display resultsfrom pool Question tabl (which i Join table)
The above code doesn't works
S, the ${poolrame i displayed properly

Crash
Descriptive
Elements

~ code 1

Query query = session.createquery(“from ool as p 1eft join fetch p.poolouestion as 5°);

“ code2

Reason _ This lterally means that the mentioned class com example Bean doesn't have a public (non-staticl getter method for the mentioned property foo
Note that the field itself is irrelevant here.
You thus need to make sure that there is a getter method matching exactly the property name, and that the method is public (non-static. and that the
method does not take any arguments and that it returns non-voi
Regardless of the type, the presence of the foo field itself i thus not relevant.
It can have a different name, or be completely absent, or even be static.
You see, the field is not what counts, but the getter method itself.

Solution The public getter method name must start with get,followed by the property name which is capitalized at only the firstletter of the property name as in
Foo. -CODE
You thus need to make sure that there is a getter method matching exactly the property name, and that the method is public (non-static. and that the
method does not take any arguments and that it returns non-void
For (not 1) properties, the getter method name must start with instead of booleanBooleanisget -CODE.
Al of below should still be accessible by foostatics{bean foo} -CODE

Crash
Solution
Knowledge

“ code 1

Figure 8: An Example of the Solution Summary

5 EVALUATION

We implement KG4CraSolver based on the crash solution KG con-
structed from 71,592 sampled crash-related threads across 245
types of exceptions. The resulting KG consists of 963,334 nodes
and 1,626,101 edges, including 70,474 Purpose, 321,535 Symptom,
107,082 Reason, 143,528 Solution, and 130,191 Environment. We then
extensively evaluate the effectiveness of KG construction, the ef-
fectiveness of crash solution recommendation, and the practical
usefulness of recommended solutions for developers, by answering
the following research questions.

RQ1 (Effectiveness of KG construction): What is the intrinsic
quality of the critical steps in the KG construction?

RQ2 (Effectiveness of solution recommendation): How ef-
fective is KG4CraSolver in crash solution recommendation?

RQ3 (Usefulness of recommended solution): How useful of
KG4CraSolver in helping developers solve crash bugs?

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang

5.1 RQ1: Effectiveness of KG Construction

In this RQ, we evaluate the effectiveness of two major steps in
KG construction, i.e., crash/solution descriptive sentence classifi-
cation (Step 3) and crash descriptive phrase extraction (Step 4) in
Section 5.1.1 and 5.1.2, respectively.

5.1.1 Crash/Solution Descriptive Sentence Classification. We first
introduce the benchmark, baseline, and metrics used in this evalua-
tion, and then present the results.

Baseline. Our sentence classifier leverages prompt learning to fine-
tune BERT with a small set of training samples. To investigate the
contribution of our prompt design, we compare our classifier with a
baseline that directly fine-tunes BERT with the same dataset as ours
(mentioned in Section 3.4.3). In particular, the baseline appends an
additional Softmax layer after BERT, which is a common practice
for building a classifier on BERT [26].

Benchmark. We manually construct a benchmark of 100 crash-
related threads as the testing set for evaluation. In particular, we first
randomly sample 100 crash-related threads that are not overlapped
with the training dataset, and then involve two MS students with
2 years Java development experience to annotate the sentences in
these threads.

Metrics. We use four commonly used evaluation metrics in sen-
tence classification tasks, i.e., accuracy, precision, recall, and F1. Ac-
curacy is the proportion of correctly classified sentences; precision
is the proportion of true positive predictions among all positive pre-
dictions; recall is the proportion of true positive predictions among
all instances; and F1-score is the harmonic mean of the precision
and recall, which balances both values.

Results. As shown in Table 2, our sentence classifier outperforms
the baseline in all metrics, i.e., 6.7%, 9.2%, 7.8%, and 8.6% improve-
ments in terms of accuracy, precision, recall, and F1-score, respec-
tively. The results demonstrate the effectiveness of our prompt
design and also indicate the superiority of prompt learning over
traditional fine-tuning when the size of training data is small.

Table 2: Effectiveness on Sentence Classification

Sentence Type KG4CraSolver Baseline
Acc. F1 Prec. | Recall Acc. F1 Prec. | Recall
Purpose 0.971 0.947 0.939 0.956 0.898 0.826 0.801 0.861
Symptom 0.975 0.971 0.978 0.965 0.910 0.894 0.898 0.891
Reason 0.883 0.874 0.886 0.867 0.798 0.776 0.783 0.770
Solution 0.860 0.860 0.862 0.861 0.814 0.813 0.815 0.812
Average 0.922 0.913 0.916 0.912 0.855 0.827 0.824 0.834

5.1.2 Crash Descriptive Phrase Extraction. We first introduce the
benchmark, baseline, and metrics used in this evaluation, and then
discuss the results.

Baseline. Similarly, we adopt a BERT-based sequence tagging
model as the baseline to study the effectiveness of our EQA model. In
particular, the baseline fine-tunes BERT with an additional Softmax
layer, which predicts the tag for each token in the input sequence.
In our task, we use the BIO tag schema and include the following
5 tags, i.e., B-Purpose, I-Purpose, B-Environment, I-Environment,
O, which represent the start token of a purpose phrase, the inside
token of a purpose phrase, the start token of an environment phrase,
the inside token of an environment phrase, and not an entity token,
respectively. By interpreting the tagging results, the baseline is able

KG4CraSolver: Recommending Crash Solutions via Knowledge Graph

to extract phrases in sentences. The baseline is fine-tuned with the
same training dataset as ours (mentioned in Section 3.5.3).
Benchmark. We manually construct a benchmark of 100 crash-
related threads as the testing set for evaluation. In particular, we first
randomly sample 100 crash-related threads that are not overlapped
with the training dataset, and then involve two MS students with
2 years Java development experience to annotate the phrases of
purpose and environment in the sentences of the purpose and
symptom categories.

Metrics. We use two commonly-used evaluation metrics in infor-
mation extraction tasks, i.e., BLEU (Bilingual Evaluation Under-
study) [48] and EM (Exact Match). BLEU calculates the n-gram
precision between the predicted and the reference answers; and
EM is a binary classification metric that calculates the percentage
of exact matches between the predicted and the reference answers.
Results. As shown in Table 3, our phrase extraction model sub-
stantially outperforms the baseline in both BLEU and EM metrics,
with 45.8% and 44.2% improvements, respectively. The poor per-
formance of the baseline indicates that it heavily relies on a large
training dataset, whereas our prompt designs help better utilize the
pre-trained model when the number of training samples is small.

Table 3: Effectiveness on Crash Descriptive Phrase Extraction

Phrase Type KG4CraSolver Baseline
BLEU EM BLEU EM
Purpose 0.860 0.827 0.573 0.564
Environment 0.850 0.840 0.221 0.219
Average 0.855 0.834 0.397 0.392

5.1.3 Summary. The results demonstrate the effectiveness of two
major steps in our KG construction, i.e., crash/solution descriptive
sentence classification and crash descriptive phrase extraction. Ad-
ditionally, the prompt learning is helpful in our scenario when there
is only a small number of training samples.

5.2 RQ2: Effectiveness of Solution
Recommendation

In this RQ, we evaluated the effectiveness of KG4CraSolver in rec-
ommending crash solutions.

5.2.1 Benchmark. SO data dumps [2] mark the duplicate relation-
ships between questions and some of them are between crash-
related questions, e.g., “Stackoverflow error in class constructor” [8]
and “Why am I getting a StackOverflowError exception in my con-
structor” [9] are duplicate questions. To construct the benchmark,
we first randomly select 50 exception types involved in our crash
solution KG and then collect pairs of crash-related questions that
1) belong to these selected exception types; and 2) have duplicate
relationships. For each exception type, we select at most 50 pairs
of duplicate questions, leading to 855 pairs of duplicate questions.
In this way, our benchmark can cover crash bugs related to diverse
exception types, e.g., SOLException and NoSuchMethodException.
For each pair of duplicate questions, we use one of it as the query
expressing the crash scenario and the accepted answer of the other
one as the ground truth for the crash solution recommendation.

5.2.2 Baselines. We compare KG4CraSolver with baselines of two
categories, i.e., existing crash solution recommendation techniques,

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

and existing retrieval methods that recommend solutions for gen-
eral questions. In particular, for the former, we include the state-
of-the-art technique CraSolver [66]; for the latter, we include two
representative retrieval methods (AnswerBot [73] and CLEAR [68]),
which represent word-embedding-based and sentence-embedding-
based information retrieval methods, respectively.
e CraSolver [66]. A crash solution recommendation method that
uses BM25 to retrieve relevant questions from SO by matching
the input crash trace with crash traces contained in the questions.

o AnswerBot [73]. AnswerBot includes a module for relevant
question retrieval, which combines the Word2Vec model [47]
and IDF metric to measure the relevance between the input query
and the questions in the corpus.

e CLEAR [68]. CLEAR is an automated API recommendation
approach with a BERT-based relevant question retrieval step and
re-ranking step.

We enhance these baselines by limiting their candidates within

crash-related threads that contain the same exception type as the

query, which is consistent with our approach (Section 4.2) for a fair
comparison.

5.2.3 Metrics. Following previous work [73], we use the widely-
used information retrieval metrics, i.e., MRR (Mean Reciprocal
Rank) and Hit@k (k = 1, 5, 10) for evaluation. MRR calculates the
average ranking of the correct solution in the ranked list, and Hit@k
computes the ratio of queries that the correct solution ranked with
Top-N positions in the ranked list to the total queries (i.e., 855
queries). For each query, we focus on the Top-100 results in the
ranked list returned by each technique.

5.24 Results. Table 4 presents the effectiveness of KG4CraSolver
and all baselines. AnswerBot-full or AnswerBot-title denotes the
baseline AnswerBot that takes the complete crash description (body
+ title) or the summarized description (only title) as inputs. Same
as it is for CLEAR-full and CLEAR-title. Overall, KG4CraSolver
outperforms all the baselines on all metrics by achieving 13.4%-
113.4%, 4.0%-77.6%, 5.0%-149.6%, and 26.9%-160.3% improvements
in terms of MRR, Hit@1, Hit@5, and Hit@10, respectively. The re-
sults indicate that the fine-grained matching of different descriptive
elements in KG4CraSolver is indeed more effective than the whole
text matching in baselines (e.g., KG4CraSolver vs. AnswerBot-full
and KG4CraSolver vs. CLEAR-full). Moreover, the gap between
CLEAR-full and CLEAR-title and the gap between KG4CraSolver
and CraSolver further demonstrate the superiority of using a com-
plete crash context over using a partial context.

Table 4: Effectiveness on Solution Recommendation

Approaches MRR H@1 H@5 H@10
CraSolver 0.095 0.058 0.115 0.156
AnswerBot-full 0.151 0.084 0.199 0.264
AnswerBot-title 0.179 0.099 0.240 0.320
CLEAR-full 0.162 0.085 0.218 0.283
CLEAR-title 0.146 0.078 0.198 0.278
KG4CraSolver 0.203 0.103 0.287 0.406

5.2.5 Summary. The results show that KG4CraSolver substantially
outperforms solution recommendation baselines, indicating the
effectiveness of our KG-based solution recommendation approach
and our fine-grained utilization of complete crash contexts.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

5.3 RQ3: User Study on Usefulness

In this RQ, we conduct a user study to evaluate the practical useful-
ness of KG4CraSolver in helping developers solve crash bugs.

5.3.1 Study Design. The details of our study design are as follows.
Participants. We invite 10 Master students with 1-4 years Java
programming experience for this user study. We conduct a pre-
experiment survey on their Java programming experience and di-
vide them into two roughly equal participant groups (G4 and Gp)
based on the survey.

Crash Bugs. We select 12 questions describing crash bugs from
the benchmark constructed in RQ2 (Section 5.2). We classify the
exception types into three categories based on the number of identi-
fied crash-related threads (Section 3.2), i.e., popular (more than 500
threads), normal (200-500 threads), and unpopular (less than 200
threads). To ensure the diversity of selected crash bugs, we sample
four questions for each category respectively and all questions se-
lected belong to different exception types. We randomly divide 12
crash bugs into two equal groups (T4 and Tp), each with six crash
bugs (two crash bugs for each exception type category).
Procedure. The task in this user study is to ask participants to
find solutions (i.e., SO threads) for a given crash bug with the aid
of KG4CraSolver or with the baseline (i.e., using the default SO
search engine). In particular, the participants in G4 are assigned
to solve crashes in T4 with KG4CraSolver and to solve crashes in
Tp with the baseline; the participants in Gp are assigned to solve
crashes in Tg with KG4CraSolver and to solve crashes in T4 with
the baseline. For each task, we provide the original SO question
(including title and question body) as the input crash context for
the participants. When participants are working on their tasks with
the baseline, they are allowed to search with any keywords on SO
with unlimited trials until they find solutions that they consider
as correct. When the participants are working on their tasks with
KG4CraSolver, they make the decision based on only the top-10
recommendation SO threads returned by KG4CraSolver. Each task
has a time limit of 10 minutes, and if the task is not completed
within the time limit, an empty solution will be submitted. For each
task, we record the relevant threads they submit, their completion
time, and the time used in finding the first relevant thread.

After all tasks are finished, we further conduct a survey to collect
user feedback. Participants are asked to evaluate KG4CraSolver in
terms of readability, conciseness, completeness, and usefulness
on a 4-points Likert scale [30](1-disagree; 2-somewhat disagree;
3-somewhat agree; 4-agree) by the following statements:

e Readability. KG4CraSolver can provide a well-organized and
easy-to-understand solution summary.

e Conciseness. KG4CraSolver can provide a solution summary
containing little redundant information.

e Completeness. KG4CraSolver can provide a solution summary
containing all necessary information for solving crash bugs.

o Usefulness. KG4CraSolver is useful in helping participants solve
crash bugs.

5.3.2 Results. For the 12 tasks, the participants submit 55 non-
empty results (4 empty results with KG4CraSolver and 1 empty
result with the baseline). We then invite two extra participants
(who are not involved in previous experiments) with more than

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang

4 years experience of in Java development to judge whether the
returned threads provide the correct solution for the given crash.
For each submitted thread, if it is judged differently by the two
participants, a third participant is assigned to give an additional
assessment to resolve the conflict by a majority-win strategy. The
agreement between the judgments is a substantial agreement (i.e.,
Cohen’s Kappa coefficient [46] of 0.678).

Table 5: Results of the User Study

Accuracy First Thread Time | Completion Time
Baseline 21.7% 92s 275s
KG4CraSolver 85.0% 61s 233s
Improvement +63.3% -31s (34.4%) -42s (15.2%)

Table 5 presents the results of our user study. Overall, with
KG4CraSolver participants can find solutions more accurately and
more efficiently. In particular, compared to using baselines, partici-
pants find correct solutions for more crashes (63.3% more) within
less time (31 seconds less). We further perform Welch'’s t-test [69]
to assess the statistical significance of the differences. The p-value
shows that all the differences are statistically significant (p < 0.05).

As for readability, completeness, conciseness, and usefulness of
KG4CraSolver, all participants rate them as either 4 (agree) or 3
(somewhat agree). Specifically, with 80%, 50%, 30% and 50% of the
ratings for each category respectively are 4. The results, as well as
the informal feedback from participants, indicate that our solution
summary is well-organized and easy to read. In particular, they
consider that the environment, exception type message, and the
retrieval matching scores of each descriptive element are helpful
for them to quickly determine the relevance of the recommended
thread. Compared to directly searching on SO, KG4CraSolver sig-
nificantly improves their search efficiency and accuracy.

5.3.3 Summary. KG4CraSolver helps developers find the solutions
more accurately and more efficiently and the participants consider
the solution summary generated by KG4CraSolver as complete,
concise, easy to read, and useful.

5.4 Threats to Validity

A major threat to the internal validity of our studies lies in the
subjective judgment in human annotations in RQ3. To mitigate the
threat, we follow commonly used data analysis principles such as
assigning multiple annotators, conflict resolution, and reporting
agreement coefficients. Additionally, the participants’ professional
background may also impact the results of RQ3. To mitigate this
threat, we collected statistics regarding the participants’ years of
experience and proficiency in Java development during the recruit-
ment process, and ensured that the average level of each group of
participants was as close as possible during the grouping process.
A common threat is that the baselines we used in RQ1 and RQ2
are implemented by ourselves because of no publicly available im-
plementations. However, we carefully reproduced and tested the
baselines to avoid introducing errors. A threat to the external valid-
ity is that our experiments are only for Java crash bugs. Thus, the
findings of our studies may not be generalized to other program-
ming languages in practice. However, the design of our KG is not
specific to Java and the implementation could be easily extended
to support libraries of other object-oriented languages.

KG4CraSolver: Recommending Crash Solutions via Knowledge Graph

6 RELATED WORK

Crash Solution Recommendation. Existing crash solution rec-
ommendation techniques [44, 45, 66] mainly use code or crash
traces as the input and find relevant SO threads based on code
matching [44, 45] or crash trace matching [66]. For example, MAE-
STRO [44] uses the buggy code to search relevant SO threads,
and Mahajan et al. [45] further extend MAESTRO to extract the
patch from the SO thread to help developers fix Java crashes. Cra-
Solver [66] uses the structural information in the crash traces to
search relevant SO threads. However, these techniques only utilize
a part of the crash context (i.e., code or crash traces) to identify the
relevant solution, without using the other important contextual ele-
ments (e.g., environment or symptom) for crash diagnosis. Our work
is different from these techniques by analyzing the crash context in
a comprehensive and structured way. To this end, we first construct
a novel knowledge graph to represent different crash/solution de-
scriptive elements and then perform fine-grained matching based
on KG to enable more accurate solution recommendation.

In addition, there is a series of techniques that recommend solu-
tions for general software engineering problems by mining online
Q&A forums [19, 20, 33, 37]. For instance, AnswerBot [19] gen-
erates a query-focused multi-answer-posts summary for a given
technical question, and CROKAGE [20] provides the solution for
a programming task based on the natural language description.
These techniques search relevant posts with pure natural language
queries, while crash context contains different descriptive elements
in different structures (e.g., code and natural language descriptions).
Thus simply concatenating them as a long textual query would lead
to an inaccurate recommendation. Our work is different from these
techniques by representing the crash context in a more structured
way instead of a long textual sequence, which further supports
fine-grained matching rather than pure text matching.
Knowledge Graphs in the Software Engineering Domain. Re-
searchers in the software engineering domain have constructed
knowledge graphs for different kinds of knowledge to support soft-
ware development tasks, such as API KG [29, 38, 39, 43, 50, 52],
software development concept KG [40, 62-64, 72, 74], program-
ming task KG [36, 59], code KG [31, 70], ML/DL model KG [41],
and bug KG [58, 67]. To the best of our knowledge, our work con-
structs the first knowledge graph for crash solutions, based on
which we further automatically recommend solutions for a given
crash description. Moreover, our work is the first one that uses
prompt-based learning in KG construction, requiring much less
labeled data than previous work (e.g., [38, 59]).

7 CONCLUSIONS

This work proposes a novel crash solution knowledge graph (KG)
to summarize the complete crash context and its solution with
a graph-structured representation. We leverage prompt learning
to automatically construct the KG from SO threads with a small
set of labeled data. Based on the constructed KG, we further pro-
pose a novel KG-based crash solution recommendation technique
KG4CraSolver by finely analyzing and matching the complete crash
context based on the crash solution KG. Our results show that the
constructed KG is of high quality and KG4CraSolver outperforms

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

baselines in all metrics. Moreover, we perform a user study to show
the practical usefulness of KG4CraSolver.

8 DATA AVAILABILITY

All data is included in our replication package [15].

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of
China (2021ZD0112903) and the National Natural Science Founda-
tion of China under Grant No. 61972098.

REFERENCES

[1] 2019. Distilbert-ase-uncased-distilled-squad. https://huggingface.co/distilbert-
base-uncased-distilled-squad
[2] 2021. Stack Overflow data dump version from September 4, 2021. Retrieved May 4,
2022 from https://archive.org/download/stackexchange/
[3] 2022. BeautifulSoup. Retrieved January 20, 2023 from https://www.crummy.com/
software/BeautifulSoup/bs4/doc/
[4] 2022. Libaries.io open data. Retrieved January 20, 2023 from https://libraries.io/
data
[5] 2022. Maven Central Repository. Retrieved January 20, 2023 from https:
//mvnrepository.com
[6] 2022. Openprompt. https://github.com/thunlp/OpenPrompt
[7] 2022. spaCy. Retrieved January 20, 2023 from https://spacy.io
[8] 2023. Duplicate question “Stackoverflow error in class constructor”.
https://stackoverflow.com/questions/18421891/stackoverflow-error-in-class-
constructor
[9] 2023. Duplicate question “Why am I getting a StackOverflowError exception in my
constructor”. https://stackoverflow.com/questions/35844801/why-am-i-getting-
a-stackoverflowerror-exception-in-my-constructor
[10] 2023. ElasticSearch. https://github.com/elastic/elasticsearch
[11] 2023. Haystack. https://github.com/deepset-ai/haystack
[12] 2023. Hugging Face Transformer Api. https://huggingface.co/docs/transformers/
index
[13] 2023. JDK 1.8. https://docs.oracle.com/javase/8/docs/api/overview-summary.
html/
[14] 2023. Optuna. https://github.com/optuna/optuna
[15] 2023. Replication Package. Retrieved February 2, 2023 from https://github.com/
FudanSELab/KG4CraSolver
[16] 2023. Stack Overflow Example Thread. https://stackoverflow.com/questions/
8577545/
[17] Gizem Aras, Didem Makaroglu, Seniz Demir, and Altan Cakir. 2021. An evaluation
of recent neural sequence tagging models in Turkish named entity recognition.
Expert Syst. Appl. 182 (2021), 115049. https://doi.org/10.1016/j.eswa.2021.115049
Sabur Butt, Noman Ashraf, Muhammad Hammad Fahim Siddiqui, Grigori Sidorov,
and Alexander F. Gelbukh. 2021. Transformer-Based Extractive Social Me-
dia Question Answering on TweetQA. Computacion y Sistemas 25, 1 (2021).
arXiv:2110.03142 https://arxiv.org/abs/2110.03142
Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhen-
chang Xing. 2019. AnswerBot: an answer summary generation tool based on
stack overflow. In Proceedings of the ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. ACM, 1134-1138.
https://doi.org/10.1145/3338906.3341186
Rodrigo Fernandes Gomes da Silva, Chanchal K. Roy, Mohammad Masudur
Rahman, Kevin A. Schneider, Klérisson V. R. Paixio, Carlos Eduardo de Car-
valho Dantas, and Marcelo de Almeida Maia. 2020. CROKAGE: effective solution
recommendation for programming tasks by leveraging crowd knowledge. Empir.
Softw. Eng. 25, 6 (2020), 4707-4758. https://doi.org/10.1007/s10664-020-09863-2
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2019). https://doi.org/10.18653/v1/n19-1423
Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. 2011. Classifying field crash
reports for fixing bugs: A case study of Mozilla Firefox. In IEEE 27th International
Conference on Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September
25-30, 2011. IEEE Computer Society, 333-342. https://doi.org/10.1109/ICSM.2011.
6080800
Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong Mei.
2015. Fixing Recurring Crash Bugs via Analyzing Q&A Sites (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015, Myra B. Cohen, Lars Grunske, and Michael Whalen
(Eds.). IEEE Computer Society, 307-318. https://doi.org/10.1109/ASE.2015.81

oy
&

=
)

[20

[21

[22

[23

https://huggingface.co/distilbert-base-uncased-distilled-squad
https://huggingface.co/distilbert-base-uncased-distilled-squad
https://archive.org/download/stackexchange/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://libraries.io/data
https://libraries.io/data
https://mvnrepository.com
https://mvnrepository.com
https://github.com/thunlp/OpenPrompt
https://spacy.io
https://stackoverflow.com/questions/18421891/stackoverflow-error-in-class-constructor
https://stackoverflow.com/questions/18421891/stackoverflow-error-in-class-constructor
https://stackoverflow.com/questions/35844801/why-am-i-getting-a-stackoverflowerror-exception-in-my-constructor
https://stackoverflow.com/questions/35844801/why-am-i-getting-a-stackoverflowerror-exception-in-my-constructor
https://github.com/elastic/elasticsearch
https://github.com/deepset-ai/haystack
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://docs.oracle.com/javase/8/docs/api/overview-summary.html/
https://docs.oracle.com/javase/8/docs/api/overview-summary.html/
https://github.com/optuna/optuna
https://github.com/FudanSELab/KG4CraSolver
https://github.com/FudanSELab/KG4CraSolver
https://stackoverflow.com/questions/8577545/
https://stackoverflow.com/questions/8577545/
https://doi.org/10.1016/j.eswa.2021.115049
https://arxiv.org/abs/2110.03142
https://arxiv.org/abs/2110.03142
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1007/s10664-020-09863-2
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/ICSM.2011.6080800
https://doi.org/10.1109/ICSM.2011.6080800
https://doi.org/10.1109/ASE.2015.81

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

[24]

[25]

[26]

[27

[28]

[29]

[30]

(31

[32

[33

[34]

[35

[36

[37]

[38

[39]

[40]

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 2022. PPT: Pre-trained
Prompt Tuning for Few-shot Learning. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022. Association for Computational Linguistics,
8410-8423. https://doi.org/10.18653/v1/2022.acl-long.576

Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. Association for Computational Linguistics,
328-339. https://doi.org/10.18653/v1/P18-1031

Chanwoo Jeong, Sion Jang, Eunjeong L. Park, and Sungchul Choi. 2020. A context-
aware citation recommendation model with BERT and graph convolutional
networks. Scientometrics 124, 3 (2020), 1907-1922. https://doi.org/10.1007/s11192-
020-03561-y

Shahedul Huq Khandkar. 2009. Open coding. University of Calgary 23 (2009),
2009.

Bonan Kou, Yifeng Di, Muhao Chen, and Tianyi Zhang. 2022. SOSum: A Dataset
of Stack Overflow Post Summaries. In 19th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022.
ACM, 247-251. https://doi.org/10.1145/3524842.3528487

Hongwei Li, Sirui Li, Jlamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph. In 34th IEEE International Conference on Software Maintenance
and Evolution, ICSME 2018, September 23-29, 2018, Madrid, Spain. IEEE Computer
Society, 183-193. https://doi.org/10.1109/ICSME.2018.00028

Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

Zeqi Lin, Yanzhen Zou, Junfeng Zhao, and Bing Xie. 2017. Improving software
text retrieval using conceptual knowledge in source code. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017. IEEE Computer Society,
123-134. https://doi.org/10.1109/ASE.2017.8115625

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task Learning based Pre-
trained Language Model for Code Completion. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 473-485. https://doi.org/10.1145/3324884.3416591
Mingwei Liu, Xin Peng, Qingtao Jiang, Andrian Marcus, Junwen Yang, and
Wenyun Zhao. 2018. Searching stackoverflow questions with multi-faceted
categorization. In Proceedings of the 10th Asia-Pacific Symposium on Internetware.
ACM, 10:1-10:10. https://doi.org/10.1145/3275219.3275227

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang
Lyu, Jiazhan Xie, and Xiaoxin Zhang. 2021. Learning-based extraction of first-
order logic representations of API directives. In ESEC/FSE °21: 29th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021. ACM, 491-502. https:
//doi.org/10.1145/3468264.3468618

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang
Lyu, Jiazhan Xie, and Xiaoxin Zhang. 2021. Learning-based extraction of first-
order logic representations of API directives. In ESEC/FSE °21: 29th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021. ACM, 491-502. https:
//doi.org/10.1145/3468264.3468618

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Jiazhan Xie, Huanjun
Xu, and Yanjun Yang. 2022. How to Formulate Specific How-To Questions
in Software Development?. In 30th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2020, November 14-18, 2022, Virtual Event, Singapore. ACM,
1015-1026. https://doi.org/10.1145/3540250.3549160

Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude,
and Chengyuan Zhao. 2022. API-Related Developer Information Needs in Stack
Overflow. IEEE Trans. Software Eng. 48, 11 (2022), 4485-4500. https://doi.org/10.
1109/TSE.2021.3120203

Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating Query-specific Class API Sum-
maries. In 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, August 26-30, 2019, Tallinn, Estonia. ACM, 120-130. https://doi.org/10.1145/
3338906.3338971

Mingwei Liu, Xin Peng, Xiujie Meng, Huanjun Xu, Shuangshuang Xing, Xin
Wang, Yang Liu, and Gang Lv. 2020. Source Code based On-demand Class Docu-
mentation Generation. In IEEE International Conference on Software Maintenance
and Evolution, ICSME 2020, Adelaide, Australia, September 28 - October 2, 2020.
IEEE, 864-865. https://doi.org/10.1109/ICSME46990.2020.00114

Mingwei Liu, Simin Yu, Xin Peng, Xueying Du, Tianyong Yang, Huanjun Xu,
and Gaoyang Zhang. 2023. Knowledge Graph based Explainable Question Re-
trieval for Programming Tasks. In 39th IEEE International Conference on Software
Maintenance and Evolution, ICSME 2023, Bogota, Colombia, October 1-6, 2023.

[41

[42

[43

[45

[46

[48

[49

[50

[51

[52

[54

[55

[56

[58

]

]

Xueying Du, Yiling Lou, Mingwei Liu, Xin Peng, and Tianyong Yang

IEEE.

Mingwei Liu, Chengyuan Zhao, Xin Peng, Siming Yu, Haofen Wang, and
Chaofeng Sha. 2023. Task-Oriented ML/DL Library Recommendation based
on a Knowledge Graph. IEEE Transactions on Software Engineering (2023).
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1-35. https://doi.org/10.1145/3560815

Yang Liu, Mingwei Liu, Xin Peng, Christoph Treude, Zhenchang Xing, and Xi-
aoxin Zhang. 2020. Generating Concept based API Element Comparison Using
a Knowledge Graph. In 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, September 21-25, 2020, Melbourne, Australia. IEEE,
834-845. https://doi.org/10.1145/3324884.3416628

Sonal Mahajan, Negarsadat Abolhassani, and Mukul R. Prasad. 2020. Recom-
mending stack overflow posts for fixing runtime exceptions using failure scenario
matching. In ESEC/FSE °20: 28th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020. ACM, 1052-1064. https://doi.org/10.1145/3368089.
3409764

Sonal Mahajan and Mukul R. Prasad. 2022. Providing Real-time Assistance
for Repairing Runtime Exceptions using Stack Overflow Posts. In 15th IEEE
Conference on Software Testing, Verification and Validation, ICST 2022, Valencia,
Spain, April 4-14, 2022. IEEE, 196-207. https://doi.org/10.1109/ICST53961.2022.
00030

Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
Medica: Biochemia Medica 22, 3 (2012), 276—282.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing Systems, Vol. 26. Curran
Associates, Inc., 3111-3119. https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b- Abstract.html

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, July
6-12, 2002, Philadelphia, PA, USA. ACL, 311-318. https://doi.org/10.3115/1073083.
1073135

Kate Pearce, Tiffany Zhan, Aneesh Komanduri, and Justin Zhan. 2021. A Com-
parative Study of Transformer-Based Language Models on Extractive Question
Answering. CoRR abs/2110.03142 (2021).

Xin Peng, Yifan Zhao, Mingwei Liu, Fengyi Zhang, Yang Liu, Xin Wang, and
Zhenchang Xing. 2018. Automatic Generation of API Documentations for Open-
Source Projects. In IEEE Third International Workshop on Dynamic Software Doc-
umentation, DySDoc@ICSME 2018, Madrid, Spain, September 25, 2018. IEEE, 7-8.
https://doi.org/10.1109/DySDoc3.2018.00010

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016. The Association for Com-
putational Linguistics, 2383-2392. https://doi.org/10.18653/v1/d16-1264
Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,
and Jianling Sun. 2020. API-Misuse Detection Driven by Fine-Grained API-
Constraint Knowledge Graph. In 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020. IEEE, 461-472. https://doi.org/10.1145/3324884.3416551

Stephen E. Robertson and Steve Walker. 1988. Some Simple Effective Approxima-
tions to the 2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings of
the 17th Annual International ACM-SIGIR Conference on Research and Development
in Information Retrieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR
Forum). ACM/Springer, 232-241. https://doi.org/10.1016/0306-4573(88)90021-0
Jaechul Roh, Minhao Cheng, and Yajun Fang. 2022. MSDT: Masked Language
Model Scoring Defense in Text Domain. CoRR abs/2211.05371 (2022). https:
//doi.org/10.1109/UV56588.2022.10185524

Dhruva Sahrawat, Debanjan Mahata, Mayank Kulkarni, Haimin Zhang, Rakesh
Gosangi, Amanda Stent, Agniv Sharma, Yaman Kumar, Rajiv Ratn Shah, and
Roger Zimmermann. 2019. Keyphrase Extraction from Scholarly Articles as
Sequence Labeling using Contextualized Embeddings. CoRR abs/1910.08840
(2019). arXiv:1910.08840 http://arxiv.org/abs/1910.08840

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR
abs/1910.01108. arXiv:1910.01108 http://arxiv.org/abs/1910.01108

Felix Stollenwerk. 2022. Adaptive Fine-Tuning of Transformer-Based Lan-
guage Models for Named Entity Recognition. CoRR abs/2202.02617 (2022).
arXiv:2202.02617 https://arxiv.org/abs/2202.02617

Yangqi Su, Zhenchang Xing, Xin Peng, Xin Xia, Chong Wang, Xiwei Xu, and Liming
Zhu. 2021. Reducing bug triaging confusion by learning from mistakes with a
bug tossing knowledge graph. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 191-202. https://doi.org/10.1109/
ASE51524.2021.9678574

https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.1007/s11192-020-03561-y
https://doi.org/10.1007/s11192-020-03561-y
https://doi.org/10.1145/3524842.3528487
https://doi.org/10.1109/ICSME.2018.00028
https://doi.org/10.1109/ASE.2017.8115625
https://doi.org/10.1145/3324884.3416591
https://doi.org/10.1145/3275219.3275227
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3540250.3549160
https://doi.org/10.1109/TSE.2021.3120203
https://doi.org/10.1109/TSE.2021.3120203
https://doi.org/10.1145/3338906.3338971
https://doi.org/10.1145/3338906.3338971
https://doi.org/10.1109/ICSME46990.2020.00114
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3324884.3416628
https://doi.org/10.1145/3368089.3409764
https://doi.org/10.1145/3368089.3409764
https://doi.org/10.1109/ICST53961.2022.00030
https://doi.org/10.1109/ICST53961.2022.00030
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/DySDoc3.2018.00010
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.1145/3324884.3416551
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1109/UV56588.2022.10185524
https://doi.org/10.1109/UV56588.2022.10185524
https://arxiv.org/abs/1910.08840
http://arxiv.org/abs/1910.08840
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2202.02617
https://arxiv.org/abs/2202.02617
https://doi.org/10.1109/ASE51524.2021.9678574
https://doi.org/10.1109/ASE51524.2021.9678574

KG4CraSolver: Recommending Crash Solutions via Knowledge Graph

[59] Jiamou Sun, Zhenchang Xing, Rui Chu, Heilai Bai, Jinshui Wang, and Xin Peng.
2019. Know-How in Programming Tasks: From Textual Tutorials to Task-Oriented
Knowledge Graph. In IEEE International Conference on Software Maintenance and
Evolution, ICSME 2019, September 29 - October 4, 2019, Cleveland, OH, USA. IEEE,
257-268. https://doi.org/10.1109/ICSME.2019.00039

[60] Inigo Jauregi Unanue, Jacob Parnell, and Massimo Piccardi. 2021. BERT Tune:
Fine-Tuning Neural Machine Translation with BERTScore. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 2: Short Papers), Virtual Event, August 1-6, 2021. Association for
Computational Linguistics, 915-924. https://doi.org/10.18653/v1/2021.acl-short.
115

[61] Stalin Varanasi, Saadullah Amin, and Guenter Neumann. 2021. AutoEQA: Auto-

Encoding Questions for Extractive Question Answering. In Findings of the Asso-

ciation for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana,

Dominican Republic, 16-20 November, 2021. Association for Computational Lin-

guistics, 4706-4712. https://doi.org/10.18653/v1/2021.findings-emnlp.403

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie,

and Tuo Wang. 2019. A Learning-Based Approach for Automatic Construction

of Domain Glossary from Source Code and Documentation. In 27th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, August 26-30, 2019,

Tallinn, Estonia. ACM, 97-108. https://doi.org/10.1145/3338906.3338963

[63] Chong Wang, Xin Peng, Zhenchang Xing, and Xiujie Meng. 2023. Beyond

Literal Meaning: Uncover and Explain Implicit Knowledge in Code Through

Wikipedia-Based Concept Linking. IEEE Trans. Software Eng. 49, 5 (2023), 3226—

3240. https://doi.org/10.1109/TSE.2023.3250029

Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and

Xiujie Meng. 2023. XCoS: Explainable Code Search based on Query Scoping and

Knowledge Graph. ACM Transactions on Software Engineering and Methodology

(2023).

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and

Michael R. Lyu. 2022. No more fine-tuning? an experimental evaluation of

prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. ACM,

382-394. https://doi.org/10.1145/3540250.3549113

Haoye Wang, Xin Xia, David Lo, John C. Grundy, and Xinyu Wang. 2021. Auto-

matic Solution Summarization for Crash Bugs. In 43rd IEEE/ACM International

Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.

[62

[64

[65

[66

[68

[71

[72

[74

]

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

IEEE, 1286-1297. https://doi.org/10.1109/ICSE43902.2021.00117

Lu Wang, Xiaobing Sun, Jingwei Wang, Yucong Duan, and Bin Li. 2017. Construct
Bug Knowledge Graph for Bug Resolution: Poster. In 39th International Conference
on Software Engineering, ICSE 2017 - Companion Volume, May 20-28, 2017, Buenos
Aires, Argentina. IEEE Computer Society, 189-191. https://doi.org/10.1109/ICSE-
C.2017.102

Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang.
2022. CLEAR: Contrastive Learning for API Recommendation. In 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA,
USA, May 25-27, 2022. ACM, 376-387. https://doi.org/10.1145/3510003.3510159
Bernard L Welch. 1947. The generalization of Student’s problem when several
different population variances are involved. Biometrika 34, 1/2 (1947), 28-35.
Rui Xie, Long Chen, Wei Ye, Zhiyu Li, Tianxiang Hu, Dongdong Du, and Shikun
Zhang. 2019. DeepLink: A Code Knowledge Graph Based Deep Learning Ap-
proach for Issue-Commit Link Recovery. In 26th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China,
February 24-27, 2019. IEEE, 434-444. https://doi.org/10.1109/SANER.2019.8667969
Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin
Zhang, and Wenyun Zhao. 2020. API method recommendation via explicit
matching of functionality verb phrases. In ESEC/FSE °20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 1015-1026. https:
//doi.org/10.1145/3368089.3409731

Shuangshuang Xing, Mingwei Liu, and Xin Peng. 2021. Automatic Code Semantic
Tag Generation Approach Based on Software Knowledge Graph. Journal of
Software 33, 11 (2021), 4027-4045.

Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Automated
Generation of Answer Summary to Developersz Technical Questions. In 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
October 30 - November 03, 2017, Urbana, IL, USA. IEEE Computer Society, 706-716.
https://doi.org/10.1109/ASE.2017.8115681

Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya Sawada, Jing Li,
and Shang-Wei Lin. 2017. HDSKG: Harvesting domain specific knowledge graph
from content of webpages. In IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt, Austria, February
20-24, 2017. IEEE Computer Society, 56-67. https://doi.org/10.1109/SANER.2017.
7884609

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/ICSME.2019.00039
https://doi.org/10.18653/v1/2021.acl-short.115
https://doi.org/10.18653/v1/2021.acl-short.115
https://doi.org/10.18653/v1/2021.findings-emnlp.403
https://doi.org/10.1145/3338906.3338963
https://doi.org/10.1109/TSE.2023.3250029
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.1109/ICSE43902.2021.00117
https://doi.org/10.1109/ICSE-C.2017.102
https://doi.org/10.1109/ICSE-C.2017.102
https://doi.org/10.1145/3510003.3510159
https://doi.org/10.1109/SANER.2019.8667969
https://doi.org/10.1145/3368089.3409731
https://doi.org/10.1145/3368089.3409731
https://doi.org/10.1109/ASE.2017.8115681
https://doi.org/10.1109/SANER.2017.7884609
https://doi.org/10.1109/SANER.2017.7884609

	Abstract
	1 Introduction
	2 Crash Solution KG Definition
	3 Crash Solution KG Construction
	3.1 Running Example
	3.2 Crash-related Thread Identification
	3.3 Non-text Content Analysis
	3.4 Crash/Solution Descriptive Sentence Classification
	3.5 Crash Descriptive Phrase Extraction

	4 KG-based Crash Solution Recommendation
	4.1 Crash Descriptive Element Extraction
	4.2 Candidate Solution Retrieval
	4.3 Candidate Solution Re-ranking
	4.4 Solution Summary

	5 Evaluation
	5.1 RQ1: Effectiveness of KG Construction
	5.2 RQ2: Effectiveness of Solution Recommendation
	5.3 RQ3: User Study on Usefulness
	5.4 Threats to Validity

	6 Related Work
	7 Conclusions
	8 Data Availability
	Acknowledgments
	References

