
Recommending Analogical APIs via Knowledge Graph
Embedding

Mingwei Liu∗
Fudan University

China

Yanjun Yang∗
Fudan University

China

Yiling Lou∗†
Fudan University

China

Xin Peng∗
Fudan University

China

Zhong Zhou∗
Fudan University

China

Xueying Du∗
Fudan University

China

Tianyong Yang∗
Fudan University

China

ABSTRACT
Library migration, which replaces the current library with a dif-
ferent one to retain the same software behavior, is common in
software evolution. An essential part of this is finding an analogous
API for the desired functionality. However, due to the multitude
of libraries/APIs, manually finding such an API is time-consuming
and error-prone. Researchers created automated analogical API rec-
ommendation techniques, notably documentation-based methods.
Despite potential, these methods have limitations, e.g., incomplete
semantic understanding in documentation and scalability issues.

In this study, we present KGE4AR, a novel documentation-based
approach using knowledge graph (KG) embedding for recommend-
ing analogical APIs during library migration. KGE4AR introduces
a unified API KG to comprehensively represent documentation
knowledge, capturing high-level semantics. It further embeds this
unified API KG into vectors for efficient, scalable similarity calcula-
tion. We assess KGE4AR with 35,773 Java libraries in two scenarios,
with and without target libraries. KGE4AR notably outperforms
state-of-the-art techniques (e.g., 47.1%-143.0% and 11.7%-80.6%MRR
improvements), showcasing scalability with growing library counts.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution; Software libraries and repositories.

KEYWORDS
API Migration, Knowledge Graph, Knowledge Graph Embedding

∗M. Liu, Y. Yang, Y. Lou, X. Peng, Z. Zhou, X. Du, and T. Yang are with the School of
Computer Science and Shanghai Key Laboratory of Data Science, Fudan University,
China.
†Y. Lou is the corresponding author (email: yilinglou@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616305

ACM Reference Format:
Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du,
and Tianyong Yang. 2023. Recommending Analogical APIs via Knowledge
Graph Embedding. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616305

1 INTRODUCTION
Third-party libraries are pivotal in modern software development,
enhancing quality and productivity [37, 43, 46, 57]. However, as
software and libraries evolve rapidly, current libraries might turn
unsuitable due to factors like sustainability failures [35, 67], license
restrictions [40, 68], lacking features [42], and security/performance
issues [42]. This necessitates library migration, where developers
replace current libraries with new ones to re-implement the same
software behavior. Such migrations are common in software evolu-
tion [41]; for example, He et al. [41] found 8.98% ~ 28.72% of 17,426
open-source projects underwent at least one library migration.

However, library migration [27, 30, 31, 37, 43] is a very time-
consuming, labor-intensive, and error-prone task for developers
in practice. For example, the prior study shows that some develop-
ers even spend up to 42 days for library migration [30]. Given the
currently-used library (called source library) and the API (called
source API), one essential part in library migration is to find an
analogical library (called target library) and an analogical API
(called target API), which can provide the same functionality as
current ones. However, manually finding analogical API is a heavy
burden for developers, since they need to read length API docu-
mentation and code snippets of potentially-analogical APIs [27–30]
while there are an extremely large number and fast changes of third-
party libraries and APIs (e.g., as of January 2020 there are 35,773
common Java libraries with 15,441,057 APIs on Libraries.io [12]).

To reduce efforts in manually searching and reading API docu-
mentation and code snippets for determining the analogical rela-
tionship between libraries and APIs, many techniques have been
proposed to recommend suitable target libraries or analogical target
APIs. In this work, we focus on analogical API recommendation.
Researchers have harnessed diverse resources to facilitate such rec-
ommendations [27–30], including evolution history [58, 65], online
Q&A interactions [34], and API documentation [28, 30, 34, 54, 59,

https://doi.org/10.1145/3611643.3616305
https://doi.org/10.1145/3611643.3616305

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and Tianyong Yang

60, 79]. Among these, documentation-based API recommendation
has been intensively studied in the literature, since API documenta-
tion is prevalent and at low cost to collect while other information
could be time-consuming to collect and are not always available.
For a given source API, existing documentation-based techniques
calculate the textual similarity between each candidate API and the
source API (e.g., the textual similarity between two API functional-
ity descriptions in the documentation), and then recommend the
candidate API with the highest similarity as the target API.

While promising, current documentation-based API recommen-
dation techniques face two limitations. First, their way of calculat-
ing textual similarity falls short in capturing semantic-level connec-
tions in API documentation. These techniques mainly calculate the
textual similarity based on the overlapping tokens [59] or measure
the token similarity without contextual consideration [79]. This
can lead to identifying analogical semantics in API descriptions
that share similar noun phrases but differing action verbs (e.g., “set
S3 Object content” vs. “get S3 Object content length”). Additionally,
these techniques seldom consider domain knowledge when calcu-
lating textual similarity. For example, JSON arrays, JSON objects,
keys, and values are all JSON-related concepts that often occur in
APIs related to JSON processing. Concepts, in the context of our
work, refer to domain-specific entities or terms, often represented
by noun phrases, that capture specific elements or ideas within the
API domain. Without considering such conceptual relationships,
the estimation of semantic similarity/relevance between two ana-
logical APIs might be underestimated. Second, these techniques
typically compute similarity pairwise, posing computational chal-
lenges with a vast number of candidate APIs. For example, envision
a library like TestNG [23], encompassing over 4,000 candidate APIs.
Existing techniques require performing over 4,000 pairwise com-
parisons to calculate the similarity between a single source API
and all the candidate APIs. This exhaustive calculation demands
substantial online costs and becomes prohibitively expensive when
multiple target libraries are involved.

To address this, we propose KGE4AR, a novel documentation-
based method leveraging Knowledge Graph Embedding for ana-
logical API Recommendation effectively and scalably. KGE4AR con-
structs a unified API knowledge graph (KG) for third-party libraries
from API documentation, leveraging graph embedding to represent
nodes and edges as numeric vectors. It efficiently retrieves the most
similar API for a given source API from the embedded KG. Com-
pared to previous approaches, KGE4AR introduces two technical
innovations. Firstly, it presents a novel unified API KG that com-
prehensively represents three types of documentation knowledge
across diverse libraries, better capturing overall semantics in API
documentation. Secondly, KGE4AR proposes embedding the uni-
fied API KG, enhancing efficiency and scalability by streamlining
analogous API vector retrieval via vector indexing.

To implement KGE4AR, we build a unified API KG consisting
of 59,155,631 API elements sourced from 35,773 Java libraries. This
KG comprises a total of 72,242,099 entities and 289,122,265 relations
connecting these entities. We evaluate KGE4AR in two API recom-
mendation scenarios: with and without target libraries. When given
the target libraries, KGE4AR achieves 47.1%-143.0% and 41.4%-95.4%
improvements over the baselines in terms of MRR and Hit@10,

respectively; while without a given target library, KGE4AR substan-
tially outperforms existing analogical API recommendation tech-
niques by achieving 11.7%-80.6%, 26.2%-72.0%, and 33.2%-116.5%
improvements in terms of MRR, precision, and recall, respectively.
We also evaluate the scalability of KGE4AR and find that it scales
well with an increasing number of libraries. Furthermore, we exten-
sively investigate the impact of different design choices in KGE4AR.

In summary, this work makes the following contributions:
• Novel Approach:We introduce KGE4AR, a documentation-
based analogical API recommendation method that builds
a unified API KG for numerous libraries, offering scalable
recommendations via KG embedding.

• Thorough Evaluation: We thoroughly evaluate KGE4AR
through effectiveness comparisons in two API recommenda-
tion scenarios, scalability assessment across various library
quantities, and analysis of design choice implications.

• Public Benchmark: We release a benchmark for extensive
analogical API evaluations across numerous libraries.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss related work in analogical API recom-
mendation and knowledge graphs in software engineering.

2.1 Analogical API Recommendation
Existing analogical API recommendation techniques leverage vari-
ous sources like evolution history [29, 58], online posts [49], and
API documentation [28, 30, 34, 54, 59, 60, 79] to find suitable target
APIs. Evolution-history-based methods [65] use evolution history
(e.g., code changes) to mine frequently co-occurring API pairs, while
documentation-based ones [28, 30, 34, 54, 59, 60] calculate textual
similarity using API-related text (e.g., descriptions). We concentrate
on documentation-based recommendation due to its prevalence,
low cost of data collection, and recent research emphasis.

Existing documentation-based API analogical techniques mainly
fall into two categories, e.g., supervised learning based [28] and
unsupervised learning based ones [30, 33, 34, 54, 59, 60, 79]. For
supervised learning-based techniques, Alrubaye et al. [28] propose
to train a machine learning model (i.e., boosted decision tree) for
analogical API inference based on the features extracted from API
documentation (e.g., the similarity of their method descriptions,
return type descriptions, method names, and class names) and
leverage the trained model to predict the probability of an unseen
API pair being analogical. Different from supervised techniques that
require a large amount of labeled data, unsupervised learning-based
techniques often vectorize APIs in an unsupervised way and then
recommend analogical APIs based on vector similarity. For example,
Zhang et al. [79] leverage the Word2Vec model to vectorize the API
functionality description, API parameters, and API return values,
and then calculate a joint similarity based on these vectors.

Although achieving promising effectiveness, existing document-
ation-based techniques suffer from twomajor drawbacks. First, they
calculate the textual similarity based on the overlapping tokens [59]
or measure the token similarity without considering the whole con-
text [79], thus cannot well capture the semantic-level similarity in
API documentation. Second, they calculate the pair-wise similarity
between all APIs in an exhaustive way, thus suffering from the

Recommending Analogical APIs via Knowledge Graph Embedding ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

API KG
Embedding

candidate
API methods

ranked analogical API methods

KG Embedding
Model

API KG Construction and Embedding

Analogical API Method Inferring

API
method

API KG

Functionality
Knowledge Extraction

API KG Construction

Structure Knowledge
Extraction

Conceptual Relation
Completion

Candidate API
Method Retrieval

Candidate API
Method Re-ranking

Figure 1: Overview of KGE4AR
scalability issue when the number of APIs is large. To address these
issues, our work makes the first attempt to comprehensively and
structurally represent the knowledge in API documentation with
a novel unified API KG. In addition, we further leverage the KG
embed to enable more effective and scalable similarity calculation.
Our evaluation results also demonstrate our improvements over
existing documentation-based techniques.

2.2 Knowledge Graph in Software Engineering
In the domain of software engineering, researchers have estab-
lished knowledge graphs for diverse objectives, encompassing API
concepts [50, 77], API caveats [45], API comparison [53], API doc-
umentation [51, 61], domain terminology [69–71], programming
tasks [48], ML/DL models [52], and bugs [64, 73]. Our work applies
the API knowledge graph in a task that is distinct from existing
work, namely analogical API recommendation. In addition, since
targeting different tasks, the design and focus of our API knowl-
edge graph are also different from existing ones. For example, the
existing API knowledge graph constructed for API misuse detec-
tion [62] mainly includes the call-order and condition-checking
relations between APIs, while our API knowledge graph focuses on
three types of knowledge (i.e., API structures, API functionality de-
scriptions, and API conceptual relationships) in API documentation
which are helpful for analogical API recommendation. Moreover,
we also propose a novel knowledge graph embedding to enable
more effective and more scalable analogical API recommendation.

2.3 Knowledge Graph Embedding
Knowledge graph embedding (KGE) uses low-dimensional vectors
to represent entities and relationships in a knowledge graph, captur-
ing semantic relationships between entities [74]. KGE models map
entities into a vector space, where similar ones are closer. They ex-
cel in applications like question answering, recommendations, and
knowledge graph completion [38, 74]. Common KGE approaches
are TransE, TransR, and DistMult [32, 47, 78]. These methods en-
code KG triples (head entity, relation, tail entity) into continuous
vector representations. For instance, TransE treats entities and re-
lations as vectors, defining relationships as translations from head
to tail entities [32]. We employ KGE to embed a unified API KG for
analogical API recommendation.

3 APPROACH
As shown in Figure 1, KGE4AR includes three phases, i.e., API KG
construction, API KG embedding, and analogical API method infer-
ring. Given the API documentation from a large number of libraries

as inputs, KGE4AR first constructs a unified API KG (Section 3.1)
and then trains an embedding model to embed the constructed KG
(Section 3.2). Lastly, for a given source API, KGE4AR returns its
analogical API based on the embedded KG (Section 3.3). Note that
the first two phases only need to be run once. Once the unified KG
is constructed and embedded, KGE4AR can recommend analogical
APIs for the given API efficiently. In particular, KGE4AR mainly
has two technical novelties.

Novelty 1: a unified API KG for a large number of libraries.
We propose constructing a unified API KG for a substantial library
count (e.g., 35,773 Java libraries in this study). Our API KG com-
prises three knowledge types found in documentation, which often
resemble analogical APIs: (1) API structures (e.g., package struc-
tures, class definitions, method declarations), (2) API functionality
descriptions (e.g., “get the number of elements in the JSONArray”),
and (3) API conceptual relationships (i.e., API concepts and their re-
lationships like “belong to”). Unlike existing approaches that focus
solely on API structures or functionality descriptions presented as
token sequences, our unified API KG offers a broader, structural
representation encompassing all three knowledge types. This in-
cludes a novel category—API conceptual relationships—previously
unexplored. A graphical structure inherently suits the structured
unification of multi-type data, thus effectively capturing the higher-
level semantics within API documentation.

Novelty 2: a KG embedding-based similarity calculation.
We propose embedding the unified API KG, representing each KG
API as a vector. KG embedding offers two advantages. First, it
effectively preserves structural and semantic data in the unified KG.
Second, it expedites similarity calculations between APIs in the KG.
Retrieving similar API vectors from a database via vector indexing
is highly efficient. Unlike existing methods requiring exhaustive
similarity calculations for all API pairs, our KG embedding enables
a more efficient and effective approach to similarity calculation.

3.1 API Knowledge Graph Construction
In this phase, KGE4AR constructs a unified API KG for a large
number of libraries based on their API documentation. The API KG
construction mainly consists of three steps. (1) Structure knowledge
extraction: KGE4AR first extracts all API elements (e.g., packages,
classes/interfaces, methods, fields, parameters) and their relation-
ships from the documentation to form a basic skeleton of the API
KG; (2) Functionality knowledge extraction: KGE4AR then extracts
the functionality knowledge of the API libraries, i.e., the standard-
ized functionality expressions of the methods (including function-
ality verbs, functionality categories, and phrase patterns) and the
involved concepts, from the names and text descriptions of methods;
(3) Conceptual relation completion: KGE4AR completes conceptual
relations between API elements and concepts by analyzing names
and text descriptions of API elements and concepts. In this way,
API elements from different libraries can be related to each other
based on shared type references (e.g., types of method parameters
and return values), functionality expressions, and concepts.

3.1.1 Schema of the Unified API Knowledge Graph. Our API KG
captures the structural and high-level information present in API
documentation. It consists of entities (nodes) and relations (edges)

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and Tianyong Yang

Method

Return Value

Parameter

Class/Interface

include

has parameter

has return value
has method

Package

Library

has
package

Functionality

Verb

Functionality

Category

Functionality

Expression

Concept

return value type of
belong to

Field

has field

has functionality has verb

Phrase Pattern

involve

follow

include pattern

instance
parameter of

Abstract
Parameter

include verb
has parameter

type

has return value type

has input value,
has input type,

has output type,
operation of

is a,
belong to,
same as,

derived from

extend,
implement

field type of

parameter
type of

Figure 2: Schema of API KG

org.json.JSONArray.length() com.google.gson.JsonArray.size()Category: get

get | element num | jsonarray return | element num | array

get | sizeget | length

has functionality has functionalitybelong to belong to

belong to

get

return

has verbhas verb

com.google.gson.JsonArray
org.json.JSONArray

belong toinclude verb

include verb
has verb

has methodhas method

json array

jsonarray array
element num

involve involve
involveinvolve

same as
is a

size

involve

length

involve
has functionalityhas functionality

instance class of concept instance class of concept

com.google.gson.JsonArray.size().<R>org.json.JSONArray.length().<R>

has return value
has return value

java.lang.Integer

return value type of
return value type of

has return value type
has return value type

json

belong to

integer

has output type
has output type

operation ofoperation of

instance class of concept

Figure 3: An Example of API KG
that represent various aspects of APIs. Here, we offer definitions
for key entities and relations:
• API Element.API elements encompass components like libraries,
packages, classes/interfaces, fields, methods, return values, pa-
rameters, and abstract parameters, forming the fundamental API
building blocks.

• Structural Relation. Structural relations describe the relation-
ships between API elements, including “extend” (inheritance),
“implement” (interface implementation), “has field” (fields within
classes/interfaces), “has method” (methods within classes/inter-
faces), and “has parameter” (methods with required parameters),
forming the API KG’s foundation.

• Functionality Expression Element. Functionality expression
elements pertain to the structural representation of API func-
tionality descriptions. This includes functionality expressions,
functionality verbs, functionality categories, phrase patterns.
They facilitate the standardized representation of API function-
alities, as defined by Xie et al. [76].

• Functionality Expression. A functionality expression provides
a structural representation for the functionality descriptions
of methods following the standardized form defined by Xie et
al. [76]. It is extracted from the description sentence of a method.

• Functionality Verb. A functionality verb represents the verb
that express the main action of the functionality, e.g., “return”,
“get”, and “obtain”.

• Functionality Category. A functionality category categorizes
the functionality expressions based on their semantic meanings,
which is abstracted from a set of functionality verbs that have
similar meanings, e.g., “return”, “get”, and “obtain” can be classi-
fied into the same category.

• Phrase Pattern. Phrase patterns capture specific syntactic pat-
terns or templates used in functionality expressions, e.g., “V
{patient}” and “V {patient} in {location}”. In the phrase pattern “V
{patient} in {location}” the placeholders “patient” and “location”

represent noun phrases that fulfill semantic roles. “{Patient}“ cor-
responds to the direct object of the functionality verb, signifying
the entity or object directly affected by the action. “{location}”
denotes the spatial or temporal context associated with the verb.

• Concept. Concepts in the API KG are specific semantic units
that capture domain-specific knowledge or common themes in
API documentation. These concepts are typically represented
by noun phrases. For instance, in APIs related to JSON process-
ing, concepts like JSON arrays, JSON objects, keys, and values
frequently appear. Concepts may be involved in functionality ex-
pressions by playing some semantic roles (e.g., patient, location).

Figure 2 showcases the schema of our API KG, illustrating the
types of entities and relations involved. Furthermore, Figure 3 pro-
vides a partial API KG example, highlighting the interconnectedness
of these entities and relations. The complete schema, including def-
initions for all the entity and relation types, is available in our
replication package [20]. The orange ellipses and solid lines denote
API elements and the structural relations between them, respec-
tively. Among them, abstract parameters represent the abstraction
of the parameters of different methods that share the same names
and types. For example, all the method parameters with the name
path and type java.lang.String are treated as the instances of the
same abstract parameter. The green ellipses denote functionality
expression elements (i.e., functionality expressions, functionality
verbs, functionality categories, and phrase patterns) and related
concepts and double lines denote relations between these elements
and concepts. Note that multiple methods may share the same
functionality expression if their functionality descriptions include
the same functionality verb, phrase pattern, functionality category,
and concepts. The dashed lines denote various relations (e.g., “is a”
and “belong to”) between concepts and the involvement relations
between API elements and concepts (e.g., “has input type” between
methods and concepts). Some relations are omitted in Figure 2 for
brevity, e.g., the “instance class of concept” relation between classes
and concepts (see Section 3.1.4).

In this way, API elements from different libraries can be indi-
rectly related through structural relations (e.g., shared parameter or
return types), functionality expressions (e.g., shared functionality
categories and involved concepts), and concepts (e.g., associated
with related concepts).

Figure 3 shows some entities and relations related to the API
methods org.json.JSONArray.length() and com.google.gson.JsonArray-
.size(). The two methods are analogical API methods from two li-
braries org.json [15] and gson [4]. Although they have different
names (i.e., length() and size()) and functionality descriptions (i.e.,
“Get the number of elements in the JSONArray, included nulls” and
“Returns the number of elements in the array”), they are indirectly re-
lated in the API KG through different kinds of relations. They share
similarities such as return value type, functionality category, and
associations with concepts like “json array” and “element num”.

3.1.2 Structure Knowledge Extraction. This step extracts structure
knowledge from the document so as to construct the basic skeleton
of the API KG. In this work, we focus on Java libraries due to its
popularity, but our approach is not specific to the programming
language. We use the Javadoc API documentation in the JAR files

Recommending Analogical APIs via Knowledge Graph Embedding ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

of each library given its neat format and prevalence, and KGE4AR
could also use API documentation from other sources (e.g., online
official documentation). In particular, KGE4AR extracts all API ele-
ments and their structural relations from the API definition accord-
ing to the schema shown in Figure 2. Meanwhile, KGE4AR further
extracts the textual descriptions of API elements from their Javadoc
comment (i.e., the comment before the method declaration [5]). The
extracted text descriptions can be used for the subsequent function-
ality knowledge extraction and conceptual knowledge extraction.
In our implementation, we utilize JavaParser [10] to analyze the
Java source files contained within JAR files. Through static analysis
based on abstract syntax tree (AST), we extract all the API elements,
as well as their structural relations and textual descriptions.

3.1.3 Functionality Knowledge Extraction. We extract functionality
knowledge of API methods by analyzing their names and text de-
scriptions. Xie et al. [76] provide a dataset for standardized function-
ality description which is available online [21]. It includes 10,016
functionality verbs, 89 functionality categories, and 523 phrase
patterns. We add all of them into the API KG as the basis of func-
tionality knowledge extraction. Xie et al. [76] also provide a tool
FuncVerbNet [9], which can parse a functionality description into
a standardized functionality expression. FuncVerbNet uses a text
classifier to classify a functionality description into a functional-
ity category and then identifies the corresponding phrase pattern,
functionality verb, and concepts based on dependency tree parsing.
For example, it extracts the following functionality expression from
the description “returns the number of elements in the array” :
Functionality Category: get;
Functionality Verb: return;
Phrase Pattern: V {patient} in {location};
Concepts: [element number, array];
Functionality Expression: return | element number | array

For each API method, we take the first sentence of its text descrip-
tion as its functionality description (if exists), following previous
work [53, 76]. Next, we utilize FuncVebNet to extract the associated
functionality expressions. The concepts present in the functionality
expressions, which correspond to noun phrases that fulfill semantic
roles in the phrase pattern, are extracted and refined through the
removal of stop words and lemmatization techniques [76]. If the
extracted functionality expressions and associated concepts do not
already exist in the API KG, we add them as entities and establish
“involve” relations between them. We also establish relations be-
tween the extracted functionality expressions and other existing
elements like functionality verbs, phrase patterns, and functionality
categories defined by the schema (see Figure 2).

If a method has no text description, we extract functionality
expression from its name. We split the name into a sequence of
tokens according to camel case and underscore and then use the
token sequence as the functionality description of the method.
For example, e.g., “get Int” can be extracted from the name of the
method getInt() as its functionality description. If a verb is missing
at the beginning of the method name, we add a default functionality
verb according to the following rules. We utilize WordNet [56], a
lexical database that provides word meanings and classifications,
to determine the part of speech (e.g., adjective, noun) of words.

• Add “get” if the method name is a noun phrase, e.g., “get length”
for JSONArray.length();

• Add “convert” if the method name starts with “to”, e.g., “convert
to String” for JSONArray.toString();

• Add “check” if themethod name is an adjective, e.g., “check empty”
for ArrayList.empty().

3.1.4 Conceptual Relation Completion. Conceptual relation com-
pletion establishes conceptual relations between analogical APIs
by analyzing the names/descriptions of API elements and concepts
and then completing conceptual relations for methods. API element
name/description analysis creates relations between API elements
and concepts and adds new concepts if necessary. Concept name
analysis creates relations between concepts. Method conceptual
relation completion completes the relations between API methods
and concepts based on existing relations.
API Element Name Analysis. Each API element (except method)
can be regarded as an instance of a corresponding concept, for
example java.io.File represents an instance of the concept file. We
extract the corresponding concepts in different ways according to
the type of API elements:
• Package, Class, and Interface: the lowercase phrase obtained by
splitting the short name (i.e., the part after the last dot of the fully
qualified name) of the API element by camel case and underscore,
e.g., “json array” is the concept for org.json.JSONArray;

• Return Value: the lowercase phrase obtained by splitting the
return value type’s short name by camel case and underscore;

• Parameter and Field: the lowercase phrase obtained by split-
ting the short name of the parameter/field by camel case and
underscore e.g., “src file” is the concept for File srcFile.

For each concept obtained in this way we create an “instance of” re-
lation between theAPI element and the concept, e.g., <org.json.JSON-
Array, instance class of concept, json array>.
API Element Description Analysis. We extract concepts from
the descriptions of API elements with the following steps:
• Extract all the noun phases with Spacy [22], for example “A
JSONObject” and “the value” are extracted from the description
of a return value “A JSONObject which is the value” ;

• Lowercase and lemmatize extracted noun phrases, for exam-
ple “files” and “A JSONObject” are converted into “file” and “a
jsonobject”, respectively;

• Remove stop words at the beginning of a phrase, for example “a”
is removed from “a jsonobject”.
All the remaining noun phrases are treated as concepts men-

tioned in the description of API elements and the corresponding con-
cept mention relations are created between them, e.g., <jsonobject,
mentioned in return value description, org.json.JSONObject.optJSON-
Object(java.lang.String).<R>>.

Concept Name Analysis. The name of a concept may imply
some conceptual relations between concepts, e.g., <json array, is,
array>. Such conceptual relations are useful for establishing possi-
ble associations between API elements with subtle differences in
concept expression. Following the previous work [53], we use the
following rules to identify possible conceptual relations between
two concepts 𝐶1 and 𝐶2 in the API KG:

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and Tianyong Yang

Table 1: Method Conceptual Relation Completion Rules (M:
Method; C: Class, T: Type; Con: Concept)

Existing Multi-hop Relations Completed Relation
<C, has method, M> <M, operation of, Con><C, instance class of concept, Con>
<M, has parameter, P> <M, has input value, Con><P, instance parameter of concept, Con>

<M, has parameter type, T> <M, has input type, Con><T, instance class of concept, Con>
<M, has return value type, T> <M, has output type, Con><T, instance class of concept, Con>

• If 𝐶1’s name is derived from 𝐶2’s name, add a relation <C1,
derived from, C2>, e.g., <builder, derived from, build>.

• If 𝐶1’s name is shorter than and the prefix of 𝐶2’s name and
there are no other longer concepts that satisfy this rule for 𝐶1,
add a relation <C2, facet of, C1>, e.g., <character sequence length,
facet of, character sequence>;

• If 𝐶1’s name is shorter than the suffix of 𝐶2’s name and there
are no other longer concepts that satisfy this rule for 𝐶1, add a
relation <C2, is, C1>, e.g., <json array, is, array>.

• If 𝐶1’s name is the same as 𝐶2’s name after removing spaces,
add bidirectional relations <C2, same as, C1> and <C1, same as,
C2>, e.g., <json array, same as, jsonarray> and <jsonarray, same
as, json array>;

APIMethod Conceptual Relation Completion. To better reflect
the conceptual associations between methods in the subsequent
API KG embedding, we further create direct relations between
methods and concepts that are indirectly connected through multi-
hop relations. We follow the rules shown in Table 1 to complete
the relations. In this way, we establish direct relations between
methods and concepts based on different parts of the methods, i.e.,
object, input value, input type, and output type.

3.2 API Knowledge Graph Embedding
In this phase, KGE4AR trains a KG embedding model based on all
the relation triples of the API KG. The model maps all the entities in
the API KG (e.g., API elements, functionality expression elements,
concepts) to a high-dimensional vector space, where API elements
with similar structural, functionality, and conceptual relationships
are close. The benefits of KG embedding include: (i) graph embed-
ding could well reserve both structural and semantic information in
the graph, and (ii) mapping APIs into vector spaces could accelerate
similar API retrieval since all API vectors are restored in a vector
database and the vector index is very efficient.

In particular, we use the ComplEx model [66], a tensor decom-
position based KG embedding method, to train the API KG em-
bedding model. A tensor decomposition models the KG as a three-
way tensor (i.e., a three-dimensional adjacency matrix), which can
be decomposed into a combination of low-dimensional vectors
(i.e., the embeddings of entities and relations [66]). ComplEx cal-
culates a score for each relation triple <ℎ,𝑟,𝑡> using the equation:
𝜙 (ℎ, 𝑟, 𝑡) = 𝐸ℎ × 𝐸𝑟 × 𝐸𝑡 , where ℎ, 𝑟 and 𝑡 are the head entity,
relation type and tail entity respectively, and 𝐸ℎ , 𝐸𝑟 and 𝐸𝑡 are
their embeddings. The score indicates the probability that the cor-
responding relation holds. The model training takes all the relation
triples in a KG as input and produces the embeddings of all the
entities and relations in the KG as output. The goal of the optimiza-
tion during training is to assign a higher score to the true triplet

Figure 4: Examples of API KG Embeddings Using ComplEx

(𝐸ℎ, 𝐸𝑟 , 𝐸𝑡) compared to the corrupted false triplets (𝐸′
ℎ
, 𝐸𝑟 , 𝐸𝑡) and

(𝐸ℎ, 𝐸𝑟 , 𝐸′𝑡). To support antisymmetric relations, the model repre-
sents 𝐸ℎ , 𝐸𝑟 and 𝐸𝑡 in complex-valued space instance of real-valued
space, e.g., ℎ has a real part 𝑅𝑒 (ℎ) and an imaginary part 𝐼𝑚(ℎ), i.e.,
ℎ = 𝑅𝑒 (ℎ) + 𝑖𝐼𝑚(ℎ).

Given the large size of the API KG (i.e., including more than
72 million entities and more than 289 million relations), we use
PyTorch-BigGraph (PBG) [44] and its implementation shared on
GitHub [18] to train the ComplEx model. PyTorch-BigGraph is a
distributed system implemented by Facebook with the purpose of
supporting the training of knowledge graph embedding models
on large graphs. We also investigate using other KG embedding
models (e.g., TransE [32] and DistMult [78]) in Section 4.3.

To facilitate more efficient similarity calculation based on the KG
embeddings, we store all the KG embeddings in a vector database,
i.e., Milvus [72]. Milvus is an open-source vector database that
supports high-efficient vector index and similarity search. Based
on Milvus, we can efficiently obtain the KG embeddings for a given
entity in the KG or find the top-𝑘 similar entity embeddings for a
given embedding.

Figure 4 shows the distribution of KG embeddings of some API
methods in the vector space, which is generated after dimension
reduction through PCA (Principal Component Analysis) [26]. Each
point in Figure 4 represents an API method from our benchmark (in
Section 4.1.1). Points with the same color and shape (i.e., triangle
or circle) represent API methods from the same library. The API
methods of the two analogical libraries have the same color but
different shapes. We could observe that API methods in the same
library (e.g., org.json) or analogical libraries (e.g., org.json and gson)
are relatively close in the vector space, while the API methods of
libraries with different topics are far apart. For example, the API
methods of the libraries related to logging (slf4j [16] and commons-
logging [2]) are far apart from the ones of the libraries related to
testing (e.g., junit [11] and org.testing [17]).

3.3 Analogical API Method Inferring
In this phase, KGE4AR returns a list of ranked analogical API meth-
ods for a given source API method based on the API KG and the
embedding model. First, KGE4AR selects candidate API methods
based on their similarities with the given API method (candidate
API method retrieval in Section 3.3.1); then, KGE4AR re-ranks the
candidate API methods by considering the similarities between the
given API method and the neighbors of the candidate API methods
(candidate API method re-ranking in Section 3.3.2). The purpose
of the candidate API method retrieval in the first step is to narrow

Recommending Analogical APIs via Knowledge Graph Embedding ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

down the scope of candidate APIs, so that the second re-ranking
step only needs to calculate the similarity between the given API
and a small number of candidate APIs.

3.3.1 Candidate API Method Retrieval. For a given source API
method 𝑠 , we first obtain its KG embedding 𝐸𝑠 by querying Milvus.
Then we calculate the KG similarity 𝑆𝑖𝑚𝑘𝑔 between 𝑠 and methods
from other libraries (called method similarity 𝑆𝑖𝑚𝑚) according to
Eq. 1, which is normalized cosine similarities between their KG
embeddings. We select the top-𝑘 (e.g., 100) API methods as candi-
dates, utilizing the efficient vector indexing in our database, which
achieves low latency in milliseconds on trillion vector datasets.

𝑆𝑖𝑚𝑘𝑔 (𝐸1, 𝐸2) = (𝐶𝑜𝑠 (𝐸1, 𝐸2) + 1)/2 (1)

3.3.2 Candidate API Method Re-ranking. Two API methods with
high KG embedding similarity are not necessarily analogical API
methods. For example, org.json.JSONArray.getJSONObject(int) and
com.google.gson.JsonArray.remove(int) have a high KG embedding
similarity since they belong to analogical classes. To address this
issue, we further compute the similarity between the same type
of neighbor concepts of the given API method 𝑠 and each can-
didate API method 𝑒 , which reflects the conceptual similarity of
API methods in different aspects (e.g., functionalities, inputs, and
outputs). The neighbor-based similarities we compute include func-
tionality similarity 𝑆𝑖𝑚𝑓 𝑢𝑛𝑐 , object similarity 𝑆𝑖𝑚𝑜𝑏 𝑗 , input type
similarity 𝑆𝑖𝑚𝑖𝑡 , input value similarity 𝑆𝑖𝑚𝑖𝑣 , output type similarity
𝑆𝑖𝑚𝑜𝑡 , and average neighbor similarity 𝑆𝑖𝑚𝑛𝑒𝑖𝑔 . To get the final
analogical score 𝑆𝑐𝑜𝑟𝑒 (𝑠, 𝑒), we then perform a weighted sum of
these neighbor-based similarities and the method similarity 𝑆𝑖𝑚𝑚

according to Eq. 2.

𝑆𝑐𝑜𝑟𝑒 (𝑠, 𝑒) =
∑︁

𝑡 ∈𝑚,𝑓 𝑢𝑛𝑐,𝑜𝑏 𝑗,𝑖𝑣,𝑖𝑡,𝑜𝑡,𝑛𝑒𝑖𝑔

𝑊𝑡 × 𝑆𝑖𝑚𝑡 (𝑠, 𝑒) (2)

All candidates are ranked by the analogical scores. We then
explain each similarity as follows.

Method Similarity (𝑆𝑖𝑚𝑚). 𝑆𝑖𝑚𝑚 is the KG similarity between
two methods, which is already computed in the retrieval step.

Functionality Similarity (𝑆𝑖𝑚𝑓 𝑢𝑛𝑐).The functionality similar-
ity measure (𝑆𝑖𝑚𝑓 𝑢𝑛𝑐) captures the similarity in the functionalities
provided by two API methods. It relies on the assumption that
comparable APIs should have similar functionality expressions. We
calculate the maximum similarity between the functionality expres-
sions corresponding to the two methods according to Eq. 3 as their
functionality similarity 𝑆𝑖𝑚𝑓 𝑢𝑛𝑐 (𝑠, 𝑒). In Eq. 3, 𝐹𝑢𝑛𝑐 (𝑠) denotes the
functionality expression of the method 𝑠 (i.e., <𝑠 , has functional-
ity, 𝐹𝑢𝑛𝑐 (𝑠)>), which is extracted from the method name or the
functionality description (see Section 3.1.3). This measure allows
us to capture the similarity of API methods based on their intended
functionality and purpose.

𝑆𝑖𝑚𝑓 𝑢𝑛𝑐 (𝑠, 𝑒) = 𝑀𝑎𝑥 (𝑆𝑖𝑚𝑘𝑔 (𝐸𝐹𝑢𝑛𝑐 (𝑠) , 𝐸𝐹𝑢𝑛𝑐 (𝑒))) (3)

Object Similarity (𝑆𝑖𝑚𝑜𝑏 𝑗). 𝑆𝑖𝑚𝑜𝑏 𝑗 captures the conceptual-
level similarity between the classes of two API methods. It is based
on the intuition that methods belonging to analogous classes are
likely to exhibit similar behavior and usage patterns. 𝑆𝑖𝑚𝑜𝑏 𝑗 is
calculated according to Eq. 4, where 𝑂𝑏 𝑗 (𝑠) represents the con-
cept corresponding to the class of the method 𝑠 (i.e., <𝑂𝑏 𝑗 (𝑠), has
operation, 𝑠>).

𝑆𝑖𝑚𝑜𝑏 𝑗 (𝑠, 𝑒) = 𝑆𝑖𝑚𝑘𝑔 (𝐸𝑂𝑏𝑗 (𝑠) , 𝐸𝑂𝑏𝑗 (𝑒))) (4)

Table 2: Statistics of Resulting API KG
Type Number Type Number
Library 35,773 Return Value 15,451,223
Package 229,061 Abstract Parameter 1,892,120
Class 3,090,537 Functionality Expression 5,200,297
Interface 281,854 Functionality Category 89
Field 6,232,643 Functionality Verb 10,016
Method 15,441,057 Phrase Pattern 523
Parameter 16,501,363 Concept 5,660,553

Input Type Similarity (𝑆𝑖𝑚𝑖𝑡). 𝑆𝑖𝑚𝑖𝑡 of two methods reflects
the conceptual-level similarity of their parameter types. Analogical
APIs are expected to operate on similar types of input data. 𝑆𝑖𝑚𝑖𝑡

is calculated according to Eq. 5, where 𝐼𝑛𝑇𝑦𝑝𝑒 (𝑠) represents a con-
cept corresponding to one of the parameter types of the method 𝑠
(i.e., <𝐼𝑛𝑇𝑦𝑝𝑒 (𝑠), has input type, 𝑠>) and 𝐸𝐼𝑛𝑇 𝑦𝑝𝑒 (𝑠) represents the
average of KG embeddings of all 𝐼𝑛𝑇𝑦𝑝𝑒 (𝑠).

𝑆𝑖𝑚𝑖𝑡 (𝑠, 𝑒) = 𝑆𝑖𝑚𝑘𝑔 (𝐸𝐼𝑛𝑇 𝑦𝑝𝑒 (𝑠) , 𝐸𝐼𝑛𝑇 𝑦𝑝𝑒 (𝑒))) (5)
Input Value Similarity (𝑆𝑖𝑚𝑖𝑣). The purpose of 𝑆𝑖𝑚𝑖𝑣 is to

capture the conceptual-level similarity of parameters between two
methods, which contributes to identifying analogical APIs. Ana-
logical APIs often exhibit similarities in the values they accept as
input, irrespective of the specific parameter types. 𝑆𝑖𝑚𝑖𝑣 is calcu-
lated according to Eq. 6, where 𝐼𝑛𝑉𝑎𝑙 (𝑠) represents a concept cor-
responding to one of the parameter of the method 𝑠 (i.e., <𝐼𝑛𝑉𝑎𝑙 (𝑠),
has input value, 𝑠>) and 𝐸𝐼𝑛𝑉𝑎𝑙 (𝑠) represents the average of KG
embeddings of all 𝐼𝑛𝑉𝑎𝑙 (𝑠).

𝑆𝑖𝑚𝑖𝑣 (𝑠, 𝑒) = 𝑆𝑖𝑚𝑘𝑔 (𝐸𝐼𝑛𝑉𝑎𝑙 (𝑠) , 𝐸𝐼𝑛𝑉𝑎𝑙 (𝑒))) (6)
Output Type Similarity (𝑆𝑖𝑚𝑜𝑡). 𝑆𝑖𝑚𝑜𝑡 of two methods re-

flects the conceptual-level similarity of their return value types.
Analogical APIs often exhibit similarities in the types of values they
return. 𝑆𝑖𝑚𝑜𝑡 is calculated according to Eq. 4, where 𝑂𝑢𝑡𝑇𝑦𝑝𝑒 (𝑠)
represents a concept corresponding to the return value type of the
method 𝑠 𝑠 (i.e., <𝑠 , has output type, 𝑂𝑢𝑡𝑇𝑦𝑝𝑒 (𝑠)>).

𝑆𝑖𝑚𝑜𝑡 (𝑠, 𝑒) = 𝑆𝑖𝑚𝑘𝑔 (𝐸𝑂𝑢𝑡𝑇 𝑦𝑝𝑒 (𝑠) , 𝐸𝑂𝑢𝑡𝑇 𝑦𝑝𝑒 (𝑒)) (7)
Average Neighbor Similarity (𝑆𝑖𝑚𝑛𝑒𝑖𝑔). Analogical APIs often

exhibit similarities not only in their individual aspects but also in
their overall context or behavior. By calculating 𝑆𝑖𝑚𝑛𝑒𝑖𝑔 using Eq.8
and Eq.9, where 𝐸𝑁𝑒𝑖𝑔 (𝑠) represents the average of KG embeddings
of the method and its neighboring concepts, we can capture the sim-
ilarity of overall neighbors between two methods. This similarity
measure provides a holistic view of the methods’ surrounding con-
text, allowing us to identify analogical APIs based on the similarity
of their overall behavior.

𝐸𝑁𝑒𝑖𝑔 (𝑠) = 𝐴𝑣𝑔 (𝐸𝑠 + 𝐸𝑂𝑏𝑗 (𝑠) + 𝐸𝐹𝑢𝑛𝑐 (𝑠)

+𝐸𝐼𝑛𝑉𝑎𝑙 (𝑠) + 𝐸𝐼𝑛𝑇 𝑦𝑝𝑒 (𝑠) + 𝐸𝑂𝑢𝑡𝑇 𝑦𝑝𝑒 (𝑠))
(8)

𝑆𝑖𝑚𝑛𝑒𝑖𝑔 (𝑠, 𝑒) = 𝑆𝑖𝑚𝑘𝑔 (𝐸𝑁𝑒𝑖𝑔 (𝑠) , 𝐸𝑁𝑒𝑖𝑔 (𝑒))) (9)

Note that instead of directly using the similarity of neighboring
API elements of two methods (e.g., their return values), we use
concepts related to neighboring API elements, as API elements are
library-specific while concepts are more likely to be shared between
libraries. In addition, to ensure the diversity of the return APIs, we
further limit the number (i.e., 3) of recommended API methods that
come from the same library.

4 EVALUATION
To implement KGE4AR, we construct a unified API KG from 35,773
Java libraries. Table 2 presents the entity type statistics of the re-
sulting API KG. To collect the Javadoc documentation for those
libaries, we first get the metadata (e.g., groupId and artifactId) of a

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and Tianyong Yang

list of Java libraries according to the Libraries.io dataset [12] (last
updated in January 2020); then, we download the latest version of
JAR files (as of August 11, 2022) from the Maven Central Repository,
resulting in 35,773 JAR files; lastly, we leverage zipfile [25] and Java-
Parser [10] to extract the API-relevant documentation from JAR
files, including the API definition and API functionality descrip-
tions. In this way, we construct an API KG with 72,242,099 entities,
including 59,155,631 API elements, 5,210,925 functionality elements,
and 5,660,553 concepts. Further, we train the KG embedding model
using ComplEx with a logistic loss.

The weight of each similarity in Eq. 2 is determined as𝑊𝑚 = 0.05,
𝑊𝑓 𝑢𝑛𝑐 = 0.95,𝑊𝑜𝑏 𝑗 = 0.8,𝑊𝑖𝑡 = 0.25,𝑊𝑖𝑣 = 0.05,𝑊𝑜𝑡 = 0.05, and
𝑊𝑛𝑒𝑖𝑔 = 0.95 based on our experiments in a separate validation
setting (to avoid overfitting) and we also investigate the impact of
different weights in Section 4.3.

We evaluate KGE4AR by answering the following research ques-
tions. RQ1 and RQ2 investigate the effectiveness of KGE4AR in two
analogical API recommendation scenarios, i.e., one with the given
target library and the other without the given target library. To
better understand the capabilities and characteristics of KGE4AR,
RQ3 analyzes the impact of different components in KGE4AR, and
RQ4 further studies the scalability of KGE4AR when the number of
libraries is increasing.
• RQ1 (Effectiveness with target libraries): How does KGE4AR
compare to existing documentation-based techniques when rec-
ommending analogical API methods with given target libraries?

• RQ2 (Effectivenesswithout target libraries): How does KGE4-
AR compare to existing documentation-based techniques when
recommending analogical API methods without given target li-
braries?

• RQ3 (Impact Analysis): How do different components in KGE4-
AR (i.e., the KG embedding models, knowledge types, and simi-
larity types and weights) impact the effectiveness of KGE4AR?

• RQ4 (Scalability): How scalable is KGE4AR with the increasing
number of libraries?

4.1 RQ1: Effectiveness with Target Libraries
In this RQ, we evaluate the effectiveness of KGE4AR and state-
of-the-art documentation-based analogical API recommendation
techniques with given target libraries.

4.1.1 Protocol. In this section, we introduce the benchmark, base-
lines, and metrics utilized for this research question.
Benchmark. There are two exiting benchmarks [30, 65] of man-
ually validated analogical API pairs; and we directly obtain both
datasets from their replication packages [1, 24] and merge them
into one benchmark. In this way, we construct a large benchmark,
which contains 245 pairs of analogical API methods from 16 pairs
of analogical libraries, covering different topics such as JSON pro-
cessing, testing, logging, and network requests. For each analogical
API pair, either API can be used as the source API, resulting in 490
source APIs (245 pairs × 2). In each query, the source API and all
candidate APIs from the target library are provided as inputs, and
the output is the ranked list of candidate APIs.
Baselines.We include two state-of-the-art documentation-based
analogical API recommendation techniques (i.e., RAPIM [28] and

Table 3: Effectiveness with Given Target Libraries
Approach MRR Hit@1 Hit@3 Hit@5 Hit@10
RAPIM 0.158 0.082 0.180 0.229 0.304

D2APIMap 0.261 0.180 0.278 0.343 0.420
KGE4AR 0.384 0.267 0.449 0.527 0.594

D2APIMap [79]) for comparison. We select these two techniques
since they are the latest and the most effective ones in the unsu-
pervised learning-based category and supervised learning-based
category, respectively.
• RAPIM [28] is a supervised learning-based approach, which
trains a machine learning model (i.e., boosted decision tree) and
leverages the trained model to predict the probability of an un-
seen API pair being analogical. In particular, for a given API
pair, RAPIM calculates a set of features that are based on the
lexical similarity of the method descriptions, return type descrip-
tions, method names, and class names between two APIs. We
collect their features according to the paper and then directly
use RAPIM via its network requests [19].

• D2APIMap [79] is an unsupervised learning-based approach that
utilizes the Word2Vec model to compute similarities between
functionality descriptions, return values, and parameters of API
pairs. It recommends the API with the highest total similarity.
Due to the unavailability of the source code, we re-implement
D2APIMap following the original paper.

Metrics. Following prior work [34], we adopt common evaluation
metrics: MRR (Mean Reciprocal Rank) and Hit@k (𝑘 = 1, 3, 5, 10).
MRR calculates the average rank of the correct analogical API in the
generated list, while Hit@k measures the proportion of queries in
which the correct analogical API appears within the top-k positions.
Considering the vast number of APIs in each library, we limit our
analysis to the top 100 candidates in the ranked list for each query.

4.1.2 Results. Table 3 presents the evaluation results, and the best
value of each metric is in boldface. KGE4AR substantially outper-
forms both baselines on all metrics. In particular, KGE4AR achieves
47.1%-143.0%, 48.3%-225.6%, 61.5%-149.4%, 53.6%-130.1%, and 41.4%-
95.4% improvements over the baselines in terms of MRR, Hit@1,
Hit@3, Hit@5, and Hit@10, respectively.

We further investigate the results and find the potential reason
why KGE4AR outperforms baselines might be that KGE4AR ana-
lyzes API functionality descriptions in a better way. For example,
when twoAPIs share the same noun phrases and different verbs (e.g.,
StorageObject.getContentLength() and S3ObjectWrapper.setObject-
Content(S3ObjectInputStream)), it is often difficult for RAPIM and
D2APIMap to distinguish them. RAPIM incorporates a TF-IDF
model to calculate similarity-related features, which often assigns
functionality verbs with low weights due to their high frequency in
the names and descriptions; D2APIMap incorporates a Word2Vec
model to calculate similarities, which often represents functionality
verbs with similar vectors due to their similar contexts. However,
KGE4AR extracts the functionality knowledge of methods (e.g.,
functionality category, functionality verb), and considers function-
ality similarity of methods in the re-ranking step (see Section 3.3),
which can effectively distinguish the difference between methods
even if they share same noun phrases. Therefore, in this example,
KGE4AR successfully identifies these two APIs as not analogical
while baselines consider them as analogical.

Recommending Analogical APIs via Knowledge Graph Embedding ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

In summary, KGE4AR substantially outperforms state-of-the-
art documentation-base techniques when inferring analogical API
methods with given target libraries.

4.2 RQ2: Effectiveness without Target Libraries
RQ1 evaluates analogical API recommendation techniqueswhen the
target library is known. However, in practice, selecting the correct
target library is challenging, and existing automated target library
recommendation approaches have limited effectiveness (Top1-recall
< 20% [42]). Therefore, in this RQ, we assess the effectiveness of
KGE4AR in the scenario where no target library is available.

4.2.1 Protocol. We then introduce the benchmark, metrics, and
baselines used in this RQ.
Benchmark. The benchmark in RQ1 only contains analogical API
pairs whose candidate APIs are from one given target library, and is
not suitable for the analogical API recommendation scenario with-
out target libraries. Therefore, in this RQ, we manually construct
a new benchmark of analogical API pairs whose candidate APIs
are from a wide range of libraries instead of from one given target
library. In particular, based on previous work [34], online resources
such as Awesome-Java [3], and our expert knowledge, we first man-
ually select 9 pairs of analogical libraries (i.e., 18 libraries); then for
each of these 18 libraries, we randomly select 15 API methods in the
library as the source APIs for evaluation, leading to 270 source APIs
in total. The selected libraries include both popular ones (usage
number > 500 in Maven Central [13]), such as gson [4], and less
popular libraries, such as dsl-json [7] and dom4j [6]. The selected li-
braries represent diverse domains such as data processing and code
analysis, ensuring the evaluation of our approach’s effectiveness
and generalizability in real-world scenarios.

Ground-truth labeling.We manually label whether the API pair
in our newly-constructed benchmark is analogical or not. Due to
the large number of potential API pairs, we only label the Top-
10 APIs returned by each technique in each query, resulting in
a total of 6,986 labeled API pairs. In particular, six participants
each with more than three years of Java development experience
manually assess whether the returned APIs are analogical to the
source API. In each query, two participants are asked to read the
API documentation of the source API and the returned APIs to make
the judgment whether they are analogical or not. The returned APIs
for each source API are shuffled before assessment, and annotators
are unaware of the technique that produced the results. In cases
where the assessment by two annotators is inconsistent, a third
annotator is involved to make a judgment, and the final annotation
is based on majority agreement. The inter-annotator agreement is
substantial, with a Cohen’s Kappa coefficient [55] of 0.666.
Metrics. In addition to the four metrics used in RQ1 (i.e., MRR,
Hit@1, Hit@3, Hit@5, and Hit@10), we further include precision
and recall in this RQ, since in this scenario there could be multiple
correct answers corresponding to a source API. In particular, preci-
sion is the fraction of analogical API methods among the returned
results, while recall is the fraction of analogical API methods that
are retrieved. In total, we compare KGE4AR with baselines on all
these metrics based on manually labeled ground truths.

Table 4: Effectiveness without Given Target Libraries
Approach MRR Hit@1 Hit@3 Hit@5 Hit@10 Precision Recall
RAPIM∗ 0.381 0.311 0.404 0.485 0.585 0.271 0.237
D2APIMap∗ 0.616 0.570 0.644 0.685 0.715 0.369 0.385
KGE4AR 0.688 0.648 0.719 0.737 0.774 0.513 0.480

Baselines. Existing baselines (i.e., RAPIM and D2APIMap) exhaus-
tively calculate the similarity between the source API and all candi-
date APIs, and thus it is unaffordably expensive to directly apply
these techniques when there is no given target library and the
number of candidate APIs is extremely large (e.g., there could be
over 15 million candidate APIs for each source API when there
is no specified target library). Therefore, in this RQ, we enhance
baselines by first narrowing the scope of their candidate APIs. In
particular, we first leverage the lightweight information retrieval
technique BM25 [63] to select Top-100 candidate APIs whose docu-
mentations share high relevance to the source API; we then apply
baselines on these candidate APIs. We adopt BM25 for its effective-
ness and efficiency [63]. Additionally, we clean the documentation
(e.g., removing stop words, splitting camel case, and performing
lemmatization) following previous work [79] to further enhance
the effectiveness of BM25. For distinction, we denote two baselines
(i.e., RAPIM and D2APIMap) enhanced with BM25 as RAPIM∗ and
D2APIMap∗, respectively.We implement the BM25-based candidate
selection with Elasticsearch [8].

4.2.2 Results. Table 4 presents the evaluation results. Overall,
KGE4AR outperforms both baselines on all metrics by achieving
11.7%-80.6%, 13.7%-108.3%, 11.6%-77.9%, 7.6%-52.0%, 8.3%-32.3%,
26.2%-72.0%, and 33.2%-116.5% improvements in terms of MRR,
Hit@1, Hit@3, Hit@5, Hit@10, precision, and recall, respectively.

We further investigate how KGE4AR performs on different li-
braries. Figure 5 shows how KGE4AR and baselines perform on
popular libraries and less popular libraries. We could find that
KGE4AR consistently outperforms baselines in both popular and
less popular libraries. Interestingly, the improvement of KGE4AR
over baselines is even larger on those less popular libraries. For
example, MRR, precision, and recall of KGE4AR on dsl-json [7]
(with only 18 usages on Maven Central) are 0.542, 0.327, 0.562, re-
spectively; while these metrics of D2APIMap∗ on the same library
are only 0.206, 0.080, and 0.171, respectively. One potential reason
might be that the APIs of less popular libraries may target rela-
tively uncommon functionality, whose descriptions may have a
large semantic gap with analogical APIs. Existing baselines rely
on simplistic text matching to recommend analogical APIs, which
cannot handle less popular APIs well; while KGE4AR could better
combine the structural information and functionality descriptions
of APIs together through knowledge graph embedding to infer
analogical APIs from a large number of candidate APIs.

In summary, KGE4AR outperforms existing techniques for infer-
ring analogical APIs without given target libraries.

4.3 RQ3: Factor Impact
In this RQ, we further analyze the impact of components in KGE4AR,
including the re-ranking component, KG embedding models, knowl-
edge types, similarity types, and weights. Given the large number
of comparison experiments in this RQ (i.e., 15 runs), we perform
experiments on a small-scale API KG based on RQ1 benchmark.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and Tianyong Yang

Figure 5: Effectiveness on Popular and Less Popular Libraries

Table 5: Impact of Different KG Embedding Models
Method MRR Hit@1 Hit@3 Hit@5 Hit@10
TransE 0.284 0.174 0.312 0.396 0.518
DistMult 0.288 0.180 0.331 0.400 0.494
ComplEx 0.293 0.183 0.324 0.422 0.524

Table 6: Impact of Different Knowledge Types
Knowledge Type MRR Hit@1 Hit@3 Hit@5 Hit@10

Structure 0.154 0.070 0.169 0.233 0.331
Functionality* 0.282 0.185 0.309 0.385 0.489

Concept* 0.237 0.150 0.259 0.335 0.422
All 0.293 0.183 0.324 0.422 0.524

4.3.1 Impact of Re-ranking Component. To investigate the con-
tribution of the re-ranking step in KGE4AR, we include a variant
(denoted as KGE4AR-Ret) of KGE4AR by removing the re-ranking
step in inferring the analogical API. The results of KGE4AR-Ret
in MRR, Hit@1, Hit@3, Hit@5, and Hit@10 are 0.233, 0.133, 0.253,
0.327, and 0.447 respectively, which are much lower than the de-
fault KGE4AR (e.g., 50.2% lower in Hit@1). Such results indicate
the re-rank step indeed contributes to the effectiveness of KGE4AR.

4.3.2 Impact of KG Embedding Models. We train various KG em-
bedding models on the small-scale API KG to explore their impact.
We compare ComplEx with TransE [32] and DistMult [78]. We
evaluate KG embedding models using KGE4AR-Ret baseline on
inferring analogical API methods with given target libraries (Sec-
tion 4.1). KGE4AR-Ret retrieves analogical API methods using KG
embedding similarity, reflecting how well models learn method
semantics. Comparison is on top 100 results (Table 5). As shown
in the table, ComplEx, the default in KGE4AR, achieves the best
performance on all metrics, implying its suitability.

4.3.3 Impact of Knowledge Types in the API Knowledge Graph. To
evaluate the impact of different types of knowledge in the API KG,
we train different KG embedding models based on a subset of rela-
tion triples in the small-scale API KG. We try three situations: only
structural relation triples (denoted as Structure), all relation triples
except functionality-related relations (denoted as Functionality*),
and all relation triples except conceptual relations (denoted as Con-
cept*). Then we evaluate different KG embedding models based on
KGE4AR-Ret and the benchmark as well. The results are shown in
Table 6. Both functionality and conceptual contribute positively to
analogical API method inferring, while conceptual knowledge has
a greater impact than functionality knowledge.

4.3.4 Impact of Similarity Types and Similarity Weights. As men-
tioned in Section 3.3.2, we tune the weights of similarities (i.e.,𝑊𝑚 ,
𝑊𝑓 𝑢𝑛𝑐 ,𝑊𝑜𝑏 𝑗 ,𝑊𝑖𝑡 ,𝑊𝑖𝑣 ,𝑊𝑜𝑡 , and𝑊𝑛𝑒𝑖𝑔) in the re-ranking step on a
small-scale API KG instead of on the large-scale API KG to avoid
overfitting. In particular, we randomly divide the benchmark into

Figure 6: Impact of the Number of Data for Tuning Weights

Figure 7: Similarities and Analogical Relationships Correla-
tion Matrix

10 folds and then use a different number of folds to tune the weights
in turn. We use Beam search [39] to tune all weights one by one
with a step size of 0.05 and a beam number of 4. Figure 6 shows
experimental results of weights tuned with different folds of data.
We could observe there is a subtle improvement when more tuning
data is used, indicating that tuning with a small set of data might
already be sufficient to achieve decent effectiveness. Note that our
weight tuning is performed on a small-scale API KG, while the pre-
vious experiments (RQ1 and RQ2) are based on a large-scale API KG.
Thus, it further indicates the tuned weights can be generalized even
on different API KGs. In addition, we further remove each similarity
(by setting its weight as 0) so as to investigate its impact on the
effectiveness of KGE4AR. Table 7 presents the evaluation results,
with 𝑆𝑖𝑚𝑡∗ representing the KGE4AR variant that excludes the
similarity 𝑆𝑖𝑚𝑡 . We can observe a decrease in the performance of
KGE4AR when each similarity is removed. Particularly, the removal
of functionality similarity 𝑆𝑖𝑚𝑓 𝑢𝑛𝑐 leads to the largest drop, with a
22.9% decrease in MRR. It shows the importance of the functionality
knowledge for analogical API method inferring. Additionally, re-
moving 𝑆𝑖𝑚𝑛𝑒𝑖𝑔 increases MRR and decreases Hit@10, suggesting
that neighbor similarity brings some noise but improves recall.

Figure 7 presents a heatmap of the correlation matrix, show-
ing the relationships between different similarity measures (e.g.,
m, func, obj) and analogical relationships (i.e., anal.). We perform
the widely-used Pearson correlation coefficient [36] and Welch’s
t-test [75] to assess the statistical significance of the observed corre-
lations. First, we could observe statistically-positive correlation of
all similarities with the analogical relationships (𝑝 << 0.05) based
on Welch’s t-test, implying that included similarities are helpful for
inferring analogical relationship more or less. Second, each similar-
ity score exhibits different correlation coefficients to the analogical
relationship, implying a different importance of their role in infer-
ring analogical relationship. Third, most similarity scores exhibit

Recommending Analogical APIs via Knowledge Graph Embedding ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 7: Contribution of Different Similarities
Similarity MRR Hit@1 Hit@3 Hit@5 Hit@10
𝑆𝑖𝑚𝑚* 0.382 0.263 0.449 0.522 0.590

𝑆𝑖𝑚𝑓 𝑢𝑛𝑐 * 0.297 0.194 0.343 0.410 0.502
𝑆𝑖𝑚𝑜𝑏 𝑗 * 0.340 0.229 0.390 0.465 0.573
𝑆𝑖𝑚𝑖𝑣* 0.383 0.271 0.447 0.520 0.592
𝑆𝑖𝑚𝑖𝑡 * 0.370 0.251 0.437 0.510 0.592
𝑆𝑖𝑚𝑜𝑡 * 0.381 0.265 0.451 0.527 0.580
𝑆𝑖𝑚𝑛𝑒𝑖𝑔* 0.385 0.273 0.447 0.527 0.578

All 0.384 0.267 0.449 0.527 0.594
Table 8: Offline Cost of KGE4AR at Different Scales
Type Library Entity Relation Input Construct. Embed.
Small 16 35K 2M 7m 49m 1.5h

Medium 899 2M 8M 1h 4h 6h
Large 35,773 72M 289M 45h 99h 60h

low correlations with others and only a few similarity scores ex-
hibit high correlation (e.g., it v.s. iv). Overall, the statistical analysis
indicates the potential benefits of different similarities to the ana-
logical relationship inference; but at the same time there could be
some redundant information among some similarities, indicating a
potentially improving direction for the future work.

In summary, the current design choices (i.e., re-ranking step, KG
embedding model, knowledge types, similarity types, and weights)
all positively contribute to the effectiveness of KGE4AR.

4.4 RQ4: Scalability
In this RQ, we explore the scalability of KGE4AR.
Online Cost. The online inference time of KGE4AR is less than
one second for one query in RQ1 and RQ2. It consists of two main
steps: candidate API method retrieval and re-rank. The re-rank
step’s time is proportional to the number of candidates and remains
constant once the candidates are determined. The retrieval step’s
time depends on the API KG size and the vector database used. To
address this, we employed the highly efficient vector index mech-
anism provided by Milvus, a scalable and highly available vector
database. Milvus has been proven to achieve an average latency
of milliseconds for vector search and retrieval on trillion-vector
datasets [14?]. This ensures that the retrieval step of KGE4AR is
performed efficiently, even as the size of the API KG increases.
Offline Cost. We primarily discuss the offline costs of KGE4AR
with different KG scales. Table 8 presents the construction costs
for three API KGs: large-scale, medium-scale, and small-scale. The
costs are calculated on a Linux server with a 36-core CPU and
128GB RAM. The columns Input, Construct., and Embed. represent
the time for downloading/preparing documentations as input, API
KG construction, and API KG embedding, respectively. Although
the number of entities increases by 2,019 times from a small-scale
API KG to a large-scale API KG, the time required for collecting
inputs, API KG construction, and API KG embedding only increases
by 386 times, 121 times, and 40 times, respectively. Note that the
KG construction and embedding are only executed once, and the
KG could be incrementally extended when there are new libraries.

In summary, there is evidence to suggest that KGE4AR has the
potential to scale effectively as the number of libraries increases.

4.5 Threats to Validity
Internal Validity. A threat to the internal validity of our stud-
ies is the subjectivity of human annotations in RQ2. To mitigate
this threat, we implemented measures such as multiple annotators,
conflict resolution, and reporting agreement coefficients. These

practices were employed to minimize bias and ensure the reliability
of the human annotations.
External Validity. A limitation of our study is the exclusive focus
on Java libraries, potentially limiting the generalizability of our find-
ings to other programming languages. However, the core concept
of our approach, involving the construction of a unified knowledge
graph across libraries, remains applicable. While our knowledge
graph design is not limited to Java, it can be extended to accom-
modate libraries from other object-oriented languages. However,
specific implementation adjustments would be required. For exam-
ple, supporting languages like Python, which lack strong typing,
would necessitate modifying the schema. Future work will explore
more programming languages for a comprehensive evaluation of
our approach’s effectiveness across diverse language environments.
Construct Validity. A common threat is that the baselines we
used in RQ1 and RQ2 are implemented by ourselves due to publicly
unavailable implementations. However, we carefully reproduced
and tested the baselines to avoid introducing errors. Another threat
is the way similarity weights are determined. We tuned the weights
through the benchmark in RQ1 and the weights may overfit the
benchmark. To mitigate this threat, we tuned the weights on a
small-scale API KG instead of the large-scale API KG used by RQ1.
Figure 6 also shows that our weights do not overfit the benchmark.

5 CONCLUSIONS
This work proposes KGE4AR, a novel documentation-based ap-
proach that leverages knowledge graph (KG) embedding to rec-
ommend analogical APIs during library migration. In particular,
KGE4AR proposes a novel unified API KG to comprehensively and
structurally represent three types of knowledge in documentation,
which could better capture the high-level semantics. In addition,
KGE4AR then proposes to embed the unified API KG, which enables
more effective and scalable similarity calculation. We implement
KGE4AR as a fully automated technique with constructing a unified
API KG for 35,773 Java libraries.We further evaluate KGE4AR in two
API recommendation scenarios (i.e., with given target libraries or
without given target libraries), and our results show that KGE4AR
substantially outperforms state-of-the-art documentation-based
techniques in both evaluation scenarios in terms of all metrics. In
addition, we further investigate the scalability of KGE4AR and find
that KGE4AR can well scale with the increasing number of libraries.

6 DATA AVAILABILITY
All the data and code could be found in our replication package [20].

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of
China under Grant No. 61972098.

REFERENCES
[1] 2023. Alrubaye et al. Dataset. Retrieved January 20, 2023 from http://migrationlab.

net/ds/groundTruth_icpc2019.html
[2] 2023. Apache Commons Logging. Retrieved January 20, 2023 from https://

mvnrepository.com/artifact/commons-logging/commons-logging
[3] 2023. awesome-java. Retrieved January 20, 2023 from https://github.com/akullpp/

awesome-java
[4] 2023. com.google.code.gson:gson. Retrieved January 20, 2023 from https:

//mvnrepository.com/artifact/com.google.code.gson/gson

http://migrationlab.net/ds/groundTruth_icpc2019.html
http://migrationlab.net/ds/groundTruth_icpc2019.html
https://mvnrepository.com/artifact/commons-logging/commons-logging
https://mvnrepository.com/artifact/commons-logging/commons-logging
https://github.com/akullpp/awesome-java
https://github.com/akullpp/awesome-java
https://mvnrepository.com/artifact/com.google.code.gson/gson
https://mvnrepository.com/artifact/com.google.code.gson/gson

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and Tianyong Yang

[5] 2023. Doc Comment. Retrieved January 20, 2023 from https://www.oracle.com/
technical-resources/articles/java/javadoc-tool.html

[6] 2023. dom4j. Retrieved January 20, 2023 from https://github.com/dom4j/dom4j
[7] 2023. dsl-json. Retrieved January 20, 2023 from https://github.com/ngs-doo/dsl-

json
[8] 2023. Elasticsearch. Retrieved January 20, 2023 from https://github.com/elastic/

elasticsearch
[9] 2023. FuncVerbNet. Retrieved January 20, 2023 from https://github.com/

FudanSELab/funcverbnet
[10] 2023. JavaParser. Retrieved January 20, 2023 from https://javaparser.org/
[11] 2023. junit:junit. Retrieved January 20, 2023 from https://mvnrepository.com/

artifact/junit/junit
[12] 2023. Libaries.io open data. Retrieved January 20, 2023 from https://libraries.io/

data
[13] 2023. Maven Central Repository. Retrieved January 20, 2023 from https:

//mvnrepository.com
[14] 2023. milvus. Retrieved January 20, 2023 from https://github.com/milvus-

io/milvus
[15] 2023. org.json:json. Retrieved January 20, 2023 from https://mvnrepository.com/

artifact/org.json/json
[16] 2023. org.slf4j:slf4j-api. Retrieved January 20, 2023 from https://mvnrepository.

com/artifact/org.slf4j/slf4j-api
[17] 2023. org.testing:testing. Retrieved January 20, 2023 from https://mvnrepository.

com/artifact/org.testng/testng
[18] 2023. PyTorch-BigGraph. Retrieved January 20, 2023 from https://github.com/

facebookresearch/PyTorch-BigGraph
[19] 2023. RAPIM Service. Retrieved January 20, 2023 from http://migrationlab.net/

MigrationWebService.php
[20] 2023. Replication Package. Retrieved August 20, 2023 from https://github.com/

FudanSELab/KGE4AR
[21] 2023. Replication Package of FuncVerbNet. Retrieved January 20, 2023 from

https://github.com/FudanSELab/Research-FSE2020-FuncVerb
[22] 2023. Spacy. Retrieved January 20, 2023 from https://spacy.io/
[23] 2023. TestNG. Retrieved January 20, 2023 from https://mvnrepository.com/

artifact/org.testng/testng
[24] 2023. Teyton et al. Dataset. Retrieved January 20, 2023 from

http://web.archive.org/web/20160412155706/http://www.labri.fr/perso/
cteyton/Matching/lang_commons_guava.html

[25] 2023. zipfile. Retrieved January 20, 2023 from https://docs.python.org/3/library/
zipfile.html

[26] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.

[27] Hussein Alrubaye and MohamedWiemMkaouer. 2018. Automating the detection
of third-party Java librarymigration at the function level. In Proceedings of the 28th
Annual International Conference on Computer Science and Software Engineering,
CASCON 2018, Markham, Ontario, Canada, October 29-31, 2018. ACM, 60–71.
https://dl.acm.org/citation.cfm?id=3291299

[28] Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon Reznik, Ali
Ouni, and Jason Mcgoff. 2020. Learning to recommend third-party library mi-
gration opportunities at the API level. Appl. Soft Comput. 90 (2020), 106140.
https://doi.org/10.1016/j.asoc.2020.106140

[29] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Migration-
Miner: An Automated Detection Tool of Third-Party Java Library Migration at
the Method Level. In 2019 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2019, Cleveland, OH, USA, September 29 - October 4, 2019.
IEEE, 414–417. https://doi.org/10.1109/ICSME.2019.00072

[30] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. On the use
of information retrieval to automate the detection of third-party Java library
migration at the method level. In Proceedings of the 27th International Conference
on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019.
IEEE / ACM, 347–357. https://doi.org/10.1109/ICPC.2019.00053

[31] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Anthony Peruma. 2019. Vari-
ability in Library Evolution. In Software Engineering for Variability Intensive
Systems - Foundations and Applications. Auerbach Publications / Taylor & Francis,
295–320. https://doi.org/10.1201/9780429022067-13

[32] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and
Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States. 2787–2795. https://proceedings.neurips.cc/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html

[33] Chunyang Chen, Sa Gao, and Zhenchang Xing. 2016. Mining Analogical Libraries
in Q&A Discussions - Incorporating Relational and Categorical Knowledge into
Word Embedding. In IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016
- Volume 1. IEEE Computer Society, 338–348. https://doi.org/10.1109/SANER.

2016.21
[34] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong. 2021.

Mining Likely Analogical APIs Across Third-Party Libraries via Large-Scale
Unsupervised API Semantics Embedding. IEEE Trans. Software Eng. 47, 3 (2021),
432–447. https://doi.org/10.1109/TSE.2019.2896123

[35] Jailton Coelho and Marco Túlio Valente. 2017. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. ACM, 186–
196. https://doi.org/10.1145/3106237.3106246

[36] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jing-
dong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson correlation coefficient.
Noise reduction in speech processing (2009), 1–4.

[37] Bradley Cossette and Robert J. Walker. 2012. Seeking the ground truth: a
retroactive study on the evolution and migration of software libraries. In
20th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. ACM, 55.
https://doi.org/10.1145/2393596.2393661

[38] Xueying Du, Mingwei Liu, Liwei Shen, and Xin Peng. [n. d.]. Research on Knowl-
edge Graph Representation Learning Methods for Link Prediction: A Review.
Journal of Software ([n. d.]).

[39] Zhipeng Gao, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. 2020. Generat-
ing Question Titles for Stack Overflow from Mined Code Snippets. ACM Trans.
Softw. Eng. Methodol. 29, 4 (2020), 26:1–26:37. https://doi.org/10.1145/3401026

[40] Daniel M. Germán and Massimiliano Di Penta. 2012. A Method for Open Source
License Compliance of Java Applications. IEEE Softw. 29, 3 (2012), 58–63. https:
//doi.org/10.1109/MS.2012.50

[41] Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou. 2021. A large-scale empirical
study on Java library migrations: prevalence, trends, and rationales. In ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Athens, Greece, August 23-28, 2021. ACM,
478–490. https://doi.org/10.1145/3468264.3468571

[42] HaoHe, Yulin Xu, YixiaoMa, Yifei Xu, Guangtai Liang, andMinghui Zhou. 2021. A
Multi-Metric Ranking Approach for Library Migration Recommendations. In 28th
IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2021, Honolulu, HI, USA, March 9-12, 2021. IEEE, 72–83. https://doi.org/
10.1109/SANER50967.2021.00016

[43] Raula Gaikovina Kula, Daniel M. Germán, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? - An empirical
study on the impact of security advisories on library migration. Empir. Softw.
Eng. 23, 1 (2018), 384–417. https://doi.org/10.1007/s10664-017-9521-5

[44] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-BigGraph: A Large Scale Graph
Embedding System. In Proceedings of Machine Learning and Systems 2019, MLSys
2019, Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org. https://proceedings.
mlsys.org/book/282.pdf

[45] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. IEEE Computer
Society, 183–193. https://doi.org/10.1109/ICSME.2018.00028

[46] Wayne C. Lim. 1994. Effects of Reuse on Quality, Productivity, and Economics.
IEEE Softw. 11, 5 (1994), 23–30. https://doi.org/10.1109/52.311048

[47] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. AAAI Press, 2181–2187. http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/9571

[48] Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Jiazhan Xie, Huanjun
Xu, and Yanjun Yang. 2022. How to formulate specific how-to questions in
software development?. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. ACM, 306–318. https:
//doi.org/10.1145/3540250.3549160

[49] Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude,
and Chengyuan Zhao. 2022. API-Related Developer Information Needs in Stack
Overflow. IEEE Trans. Software Eng. 48, 11 (2022), 4485–4500. https://doi.org/10.
1109/TSE.2021.3120203

[50] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating query-specific class API sum-
maries. In Proceedings of the ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. ACM, 120–130.
https://doi.org/10.1145/3338906.3338971

[51] Mingwei Liu, Xin Peng, Xiujie Meng, Huanjun Xu, Shuangshuang Xing, Xin
Wang, Yang Liu, and Gang Lv. 2020. Source Code based On-demand Class Docu-
mentation Generation. In IEEE International Conference on Software Maintenance
and Evolution, ICSME 2020, Adelaide, Australia, September 28 - October 2, 2020.
IEEE, 864–865. https://doi.org/10.1109/ICSME46990.2020.00114

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://github.com/dom4j/dom4j
https://github.com/ngs-doo/dsl-json
https://github.com/ngs-doo/dsl-json
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/FudanSELab/funcverbnet
https://github.com/FudanSELab/funcverbnet
https://javaparser.org/
https://mvnrepository.com/artifact/junit/junit
https://mvnrepository.com/artifact/junit/junit
https://libraries.io/data
https://libraries.io/data
https://mvnrepository.com
https://mvnrepository.com
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus
https://mvnrepository.com/artifact/org.json/json
https://mvnrepository.com/artifact/org.json/json
https://mvnrepository.com/artifact/org.slf4j/slf4j-api
https://mvnrepository.com/artifact/org.slf4j/slf4j-api
https://mvnrepository.com/artifact/org.testng/testng
https://mvnrepository.com/artifact/org.testng/testng
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/facebookresearch/PyTorch-BigGraph
http://migrationlab.net/MigrationWebService.php
http://migrationlab.net/MigrationWebService.php
https://github.com/FudanSELab/KGE4AR
https://github.com/FudanSELab/KGE4AR
https://github.com/FudanSELab/Research-FSE2020-FuncVerb
https://spacy.io/
https://mvnrepository.com/artifact/org.testng/testng
https://mvnrepository.com/artifact/org.testng/testng
http://web.archive.org/web/20160412155706/http://www.labri.fr/perso/cteyton/Matching/lang_commons_guava.html
http://web.archive.org/web/20160412155706/http://www.labri.fr/perso/cteyton/Matching/lang_commons_guava.html
https://docs.python.org/3/library/zipfile.html
https://docs.python.org/3/library/zipfile.html
https://dl.acm.org/citation.cfm?id=3291299
https://doi.org/10.1016/j.asoc.2020.106140
https://doi.org/10.1109/ICSME.2019.00072
https://doi.org/10.1109/ICPC.2019.00053
https://doi.org/10.1201/9780429022067-13
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.1109/SANER.2016.21
https://doi.org/10.1109/SANER.2016.21
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/3401026
https://doi.org/10.1109/MS.2012.50
https://doi.org/10.1109/MS.2012.50
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.1109/SANER50967.2021.00016
https://doi.org/10.1109/SANER50967.2021.00016
https://doi.org/10.1007/s10664-017-9521-5
https://proceedings.mlsys.org/book/282.pdf
https://proceedings.mlsys.org/book/282.pdf
https://doi.org/10.1109/ICSME.2018.00028
https://doi.org/10.1109/52.311048
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://doi.org/10.1145/3540250.3549160
https://doi.org/10.1145/3540250.3549160
https://doi.org/10.1109/TSE.2021.3120203
https://doi.org/10.1109/TSE.2021.3120203
https://doi.org/10.1145/3338906.3338971
https://doi.org/10.1109/ICSME46990.2020.00114

Recommending Analogical APIs via Knowledge Graph Embedding ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[52] Mingwei Liu, Chengyuan Zhao, Xin Peng, Siming Yu, Haofen Wang, and
Chaofeng Sha. 2023. Task-Oriented ML/DL Library Recommendation based
on a Knowledge Graph. IEEE Transactions on Software Engineering (2023).

[53] Yang Liu, Mingwei Liu, Xin Peng, Christoph Treude, Zhenchang Xing, and Xi-
aoxin Zhang. 2020. Generating Concept based API Element Comparison Using
a Knowledge Graph. In 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE,
834–845. https://doi.org/10.1145/3324884.3416628

[54] Yangyang Lu, Ge Li, Zelong Zhao, Linfeng Wen, and Zhi Jin. 2017. Learning
to Infer API Mappings from API Documents. In Knowledge Science, Engineering
and Management - 10th International Conference, KSEM 2017, Melbourne, VIC,
Australia, August 19-20, 2017, Proceedings (Lecture Notes in Computer Science,
Vol. 10412). Springer, 237–248. https://doi.org/10.1007/978-3-319-63558-3_20

[55] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
Medica: Biochemia Medica 22, 3 (2012), 276–282.

[56] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41. https://doi.org/10.1145/219717.219748

[57] Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, productivity and eco-
nomic benefits of software reuse: a review of industrial studies. Empir. Softw.
Eng. 12, 5 (2007), 471–516. https://doi.org/10.1007/s10664-007-9040-x

[58] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen.
2014. Statistical learning approach for mining API usage mappings for code
migration. In ACM/IEEE International Conference on Automated Software En-
gineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. ACM, 457–468.
https://doi.org/10.1145/2642937.2643010

[59] Rahul Pandita, Raoul Jetley, Sithu D. Sudarsan, Tim Menzies, and Laurie A.
Williams. 2017. TMAP: Discovering relevant API methods through text mining
of API documentation. J. Softw. Evol. Process. 29, 12 (2017). https://doi.org/10.
1002/smr.1845

[60] Rahul Pandita, Raoul Praful Jetley, Sithu D. Sudarsan, and Laurie A. Williams.
2015. Discovering likely mappings between APIs using text mining. In 15th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2015, Bremen, Germany, September 27-28, 2015. IEEE Computer Society,
231–240. https://doi.org/10.1109/SCAM.2015.7335419

[61] Xin Peng, Yifan Zhao, Mingwei Liu, Fengyi Zhang, Yang Liu, Xin Wang, and
Zhenchang Xing. 2018. Automatic Generation of API Documentations for Open-
Source Projects. In IEEE Third International Workshop on Dynamic Software Doc-
umentation, DySDoc@ICSME 2018, Madrid, Spain, September 25, 2018. IEEE, 7–8.
https://doi.org/10.1109/DySDoc3.2018.00010

[62] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,
and Jianling Sun. 2020. API-Misuse Detection Driven by Fine-Grained API-
Constraint Knowledge Graph. In 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020. IEEE, 461–472. https://doi.org/10.1145/3324884.3416551

[63] Stephen E. Robertson and Steve Walker. 1994. Some Simple Effective Approxima-
tions to the 2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings
of the 17th Annual International ACM-SIGIR Conference on Research and Devel-
opment in Information Retrieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of
the SIGIR Forum), W. Bruce Croft and C. J. van Rijsbergen (Eds.). ACM/Springer,
232–241. https://doi.org/10.1007/978-1-4471-2099-5_24

[64] Yanqi Su, Zhenchang Xing, Xin Peng, Xin Xia, Chong Wang, Xiwei Xu, and
Liming Zhu. 2021. Reducing Bug Triaging Confusion by Learning from Mistakes
with a Bug Tossing Knowledge Graph. In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021. IEEE, 191–202. https://doi.org/10.1109/ASE51524.2021.9678574

[65] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. 2013. Automatic discovery
of function mappings between similar libraries. In 20th Working Conference on
Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-17, 2013. IEEE
Computer Society, 192–201. https://doi.org/10.1109/WCRE.2013.6671294

[66] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings,

Vol. 48). JMLR.org, 2071–2080. http://proceedings.mlr.press/v48/trouillon16.html
[67] Marat Valiev, Bogdan Vasilescu, and James D. Herbsleb. 2018. Ecosystem-level de-

terminants of sustained activity in open-source projects: a case study of the PyPI
ecosystem. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018.
ACM, 644–655. https://doi.org/10.1145/3236024.3236062

[68] Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel M.
Germán, and Armijn Hemel. 2014. Tracing software build processes to uncover
license compliance inconsistencies. In ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19,
2014. ACM, 731–742. https://doi.org/10.1145/2642937.2643013

[69] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie,
and Tuo Wang. 2019. A learning-based approach for automatic construction of
domain glossary from source code and documentation. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. ACM, 97–108. https://doi.org/10.1145/3338906.3338963

[70] Chong Wang, Xin Peng, Zhenchang Xing, and Xiujie Meng. 2023. Beyond
Literal Meaning: Uncover and Explain Implicit Knowledge in Code Through
Wikipedia-Based Concept Linking. IEEE Trans. Software Eng. 49, 5 (2023), 3226–
3240. https://doi.org/10.1109/TSE.2023.3250029

[71] ChongWang, Xin Peng, Zhenchang Xing, Yue Zhang,Mingwei Liu, Rong Luo, and
Xiujie Meng. 2023. XCoS: Explainable Code Search based on Query Scoping and
Knowledge Graph. ACM Transactions on Software Engineering and Methodology
(2023).

[72] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built
Vector Data Management System. In SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021. ACM, 2614–2627.
https://doi.org/10.1145/3448016.3457550

[73] Lu Wang, Xiaobing Sun, Jingwei Wang, Yucong Duan, and Bin Li. 2017. Con-
struct bug knowledge graph for bug resolution: poster. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume. IEEE Computer Society, 189–191.
https://doi.org/10.1109/ICSE-C.2017.102

[74] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data
Eng. 29, 12 (2017), 2724–2743. https://doi.org/10.1109/TKDE.2017.2754499

[75] Bernard LWelch. 1947. The generalization of ‘STUDENT’S’problemwhen several
different population varlances are involved. Biometrika 34, 1-2 (1947), 28–35.

[76] Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin
Zhang, and Wenyun Zhao. 2020. API method recommendation via explicit
matching of functionality verb phrases. In 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2020, November 8-13, 2020, Virtual Event, USA.
ACM, 1015–1026. https://doi.org/10.1145/3368089.3409731

[77] Shuangshuang Xing, Mingwei Liu, and Xin Peng. 2021. Automatic Code Semantic
Tag Generation Approach Based on Software Knowledge Graph. Journal of
Software 33, 11 (2021), 4027–4045.

[78] Bishan Yang,Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embed-
ding Entities and Relations for Learning and Inference in Knowledge Bases. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1412.6575

[79] Zejun Zhang, Minxue Pan, Tian Zhang, Xinyu Zhou, and Xuandong Li. 2020.
Deep-Diving into Documentation to Develop Improved Java-to-Swift API Map-
ping. In ICPC ’20: 28th International Conference on Program Comprehension, Seoul,
Republic of Korea, July 13-15, 2020. ACM, 106–116. https://doi.org/10.1145/
3387904.3389282

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1145/3324884.3416628
https://doi.org/10.1007/978-3-319-63558-3_20
https://doi.org/10.1145/219717.219748
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1145/2642937.2643010
https://doi.org/10.1002/smr.1845
https://doi.org/10.1002/smr.1845
https://doi.org/10.1109/SCAM.2015.7335419
https://doi.org/10.1109/DySDoc3.2018.00010
https://doi.org/10.1145/3324884.3416551
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1109/ASE51524.2021.9678574
https://doi.org/10.1109/WCRE.2013.6671294
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.1145/3236024.3236062
https://doi.org/10.1145/2642937.2643013
https://doi.org/10.1145/3338906.3338963
https://doi.org/10.1109/TSE.2023.3250029
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1109/ICSE-C.2017.102
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1145/3368089.3409731
http://arxiv.org/abs/1412.6575
https://doi.org/10.1145/3387904.3389282
https://doi.org/10.1145/3387904.3389282

