ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346595612
Source Code based On-demand Class Documentation Generation

Conference Paper - September 2020

DOI: 10.1109/ICSME46990.2020.00114

CITATIONS READS
2 14

8 authors, including:

Mingwei Liu y Xin Peng

Fudan University Fudan University

9 PUBLICATIONS 64 CITATIONS 118 PUBLICATIONS 1,225 CITATIONS
SEE PROFILE SEE PROFILE

Yang Liu
Nanyang Technological University

391 PUBLICATIONS 5,320 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Securify: A compositional Approach of Building Security Verified Systems View project

roject STAndroid View project

All content following this page was uploaded by Mingwei Liu on 13 April 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/346595612_Source_Code_based_On-demand_Class_Documentation_Generation?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/346595612_Source_Code_based_On-demand_Class_Documentation_Generation?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Securify-A-compositional-Approach-of-Building-Security-Verified-Systems?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/STAndroid?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fudan_University2?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xin-Peng-12?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xin-Peng-12?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fudan_University2?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xin-Peng-12?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang-Liu-477?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang-Liu-477?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang-Liu-477?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-6fd5d92e445f5b8471be5f97a63aa4c3-XXX&enrichSource=Y292ZXJQYWdlOzM0NjU5NTYxMjtBUzoxMDEyMDE4OTUzODYzMTY4QDE2MTgyOTU1MjkwNzc%3D&el=1_x_10&_esc=publicationCoverPdf

Source Code based On-demand Class
Documentation Generation

Mingwei Liu*f, Xin Peng*!, Xiujie Meng*!, Huanjun Xu*, Shuangshuang Xing*f, Xin Wang*, Yang Liu*!, Gang Lv*'

*School of Computer Science, Fudan University, Shanghai, China
TShcmghai Key Laboratory of Data Science, Fudan University, China

{19110240019, pengxin, 20212010114, 20212010075, 18212010042, 18212010029, 18212010066, 19212010053} @fudan.edu.com

Abstract—In this paper, we present OpenAPIDocGen2, a
tool that generates on-demand class documentation based on
source code and documentation analysis. For a given class,
OpenAPIDocGen2 generates a combined documentation for it,
which includes functionality descriptions, directives, domain con-
cepts, usage examples, class/method roles, key methods, relevant
classes/methods, characteristics and concepts classification, and
usage scenarios.

Index Terms—Documentation Generation, Knowledge Extrac-
tion, Information Seeking

I. INTRODUCTION

In this paper, we present OpenAPIDocGen2, a tool that gen-
erates on-demand class documentation based source code and
documentation analysis. It is an improved version of OpenAPI-
DocGen from our previous work [1]. OpenAPIDocGen?2 relies
more on source code and can be used for any projects. In
contrast, OpenAPIDocGen is targeted at API library projects
such as Apache POI!, thus uses also online discussions (e.g.,
Stack Overflow posts) about their API classes/methods. Ope-
nAPIDocGen?2 integrates improved techniques for documenta-
tion generation, for example code summarization technique for
generating comments, directive extraction from both code and
comments. In addition, it provides new types of knowledge
such as key methods, relevant classes/methods.

Given a class, OpenAPIDocGen2 automatically generates
the following descriptions for it by analyzing the source code
and relevant development documentations (e.g., user guide).

1) Functionality Description. The functionality description
of the class and its methods.

2) Directive. Directive sentences that describe the con-
straints or guidelines for the usage of the class and its methods.

3) Domain Concepts. Domain specific concepts that are
relevant to the target software project.

4) Usage Examples. Code fragments that use the class and
its methods.

5) Class/Method Role. The roles that the class and its
methods play in the project.

6) Key Methods. The methods that implement the important
parts of the class.

7) Relevant Classes/Methods. Other classes/methods that
are relevant to the class and its method.

Thttps://poi.apache.org/

8) Characteristics/Concepts Classification. The char-
acteristics of the class and its methods (e.g., readable,
writable, serializable) and related concept classification (e.g.,
org.jabref.model.entry.BibEntry is a BibTex/BibLaTeX entry).

9) Usage Scenario. The scenarios where the classes and its
methods can be used.

II. PROPOSED SOLUTION

To generate different parts of the on-demand documentation,
we consider different aspects of the source code and use
different code and text analysis techniques such as static
analysis, text classification, text generation, graph mining,
and clustering. Deep learning techniques are also used as
required to boost the performance of specific tasks. For the
identification of domain concepts, software documentations
such as user manuals are also considered.

1) Functionality Description. Functionality description is
provided for a class and each of its methods. Method func-
tionalities are usually specified by method comments. For a
method that has no comments, we use a code summarization
technique to generate a summary for it. Following the current
trend of code summarization, we treat the task as a neural
machine translation problem and train a deep learning model
to generate a summary for a given method. To this end, we
collect a large corpus with more than four million method-
comment pairs from thousands of Java projects in GitHub and
train a Seq2Seq model by using the corpus as the training
data. The model takes a sequence of code tokens as the
input (i.e., the source code of the method) and generates a
sequence of text words as the output (i.e., the summary of
the method). For a method that has comments, we train a
text classifier to identify functionality descriptions from its
comments. We use the text classifier for implemented in our
previous work [2], which classifies a given sentence into three
categories, i.e., functionality, directive, and other. We split the
comment into sentences and use the classifier to determine
whether each sentence is a functionality description or not. For
class functionality description we use the same text classifier
to identify functionality descriptions from the class comments.

2) Directive. We extract directives for a class from both
its comments and source code. To extract directives from
comments, we use the same text classifier [2] to identify
directive sentences from the comments of the class and its

methods. To extract directives from source code, we follow
the approach proposed in [3] to extract four most common pa-
rameter constraints (i.e., Nullness, Nullable, Range Limitation,
Type Restriction) for each method of the class by analyzing
condition checking statements.

3) Domain Concepts. We identify domain concepts from
the source code and documentation relevant to the project (e.g.,
user manuals) by combining a learning-based approach and an
unsupervised approach. The learning-based approach is from
our previous work [4], which automatically construct a domain
glossary from source code and software documentation. The
unsupervised approach only uses the documentation as corpus
to identify domain concepts. First, the corpus is cleaned by re-
moving special characters and splitting sentences. Then all N-
gram (less than 5) phrases are extracted as candidate domain
concepts and low-frequency phrases are filtered. After that we
calculate the four statistical features that measure the quality
of domain concepts, i.e., TF-IDF (Term Frequency—Inverse
Document Frequency), PMI (Point-wise Mutual Information),
information entropy of left adjacent word and information
entropy of right adjacent word. We combine them together and
use thresholds to select high-quality domain concepts from the
candidates. The domain concepts extracted by the above two
approaches are merged together. For a given class relevant
domain concepts are selected based on their similarity to the
source code (including comments) of the class.

4) Usage Examples. We first identify the code fragments
in the current project that involve the methods of the class.
Then we group the identified code fragments into different
clusters based on the text similarity and structure similarity of
the code. After that, we select a representative code fragment
from each cluster as a usage example of the class.

5) Class/Method Role. For the class and its methods, we
use the following heuristic rules to identify their roles. First,
we identify the role of each method (i.e., Accessor, Mutator,
Creational, Constructor, or Others) based on the name, the
declaration, and the implementation details of the method.
For example, the methods that simply return the values of
class fields or check the boolean conditions of the values
are classified as Accessor methods. Based on the results of
method role identification, we further identify the role of each
class, i.e., Entity, Factory, Util, Pool, or Others. For example,
The classes whose number of Accessor methods and Mutator
methods accounts for more than 80% of the total number of
methods are classified as Entity classes.

6) Key Methods. We use PageRank algorithm [5] to identify
key methods in a class. We run the PageRank algorithm on
the call graph of the project and calculate the scores for each
method. Then the top ranked methods of the class are treated
as the key methods.

7) Relevant Classes/Methods. We use SimRank algo-
rithm [6] to identity the classes/methods that are relevant
to a given class/method. We run the algorithm on the call
graph of the project and calculate the similarity between
each pair of classes and each pair of methods. Then for a
given class/method, we choose the classes/methods that can

be reached in two hops in the call graph as the candidates
of relevant classes/methods. The candidate classes/methods
are ranked according to their SimRank scores with the given
class/method and the top ranked ones are chosen as relevant
classes/methods.

8) Characteristic/Concepts Classification. Our previous
work [7] extracted the concept classification, functionality and
characteristics of API elements from API reference documen-
tation. Using the same technique, we extract characteristic
specification and concepts classification for each class and
method based on analyzing their names, code structure re-
lationships and comments.

9) Usage Scenario. Given a class, we consider two typical
usage scenarios: 1) how to get the instances of the class; and
2) where the class can be used. For the former, we identify
the methods that return an instance of the class and use these
usage examples as the first type of scenarios; we identify the
methods that take an instance of the class as input and use
these usage examples as the second type of scenarios.

III. ONLINE DEMONSTRATION

We applied OpenAPIDocGen2 to the open source project,
JabRef, based on its source code and comments’> and
user documentation®. An online demonstration of on-demand
class documentation generation for JabRef is available at:
http://106.14.239.166:8080/DocGen/index.html#/. It takes as
input a fully qualified name of a class and returns the gen-
erated documentation for the given class. Our implementation
for OpenAPIDocGen2 [8] and its front end for demonstra-
tion [9] are available on GitHub.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under Grant No. 61972098.

REFERENCES

[1] X. Peng, Y. Zhao, M. Liu, F. Zhang, Y. Liu, X. Wang, and Z. Xing,
“Automatic generation of API documentations for open-source projects,”
in DySDoc@ICSME 2018, pp. 7-8.

[2] M. Liu, X. Peng, A. Marcus, Z. Xing, W. Xie, S. Xing, and Y. Liu,
“Generating query-specific class API summaries,” in ESEC/SIGSOFT
2019, pp. 120-130.

[3] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. C. Gall,

“Analyzing APIs documentation and code to detect directive defects,”

in Proceedings of the 39th International Conference on Software Engi-

neering, ICSE 2017, pp. 27-37.

C. Wang, X. Peng, M. Liu, Z. Xing, X. Bai, B. Xie, and T. Wang, “A

learning-based approach for automatic construction of domain glossary

from source code and documentation,” in ESEC/SIGSOFT 2019, pp. 97—

108.

[5] A. N. Langville and C. D. Meyer, “Deeper inside pagerank,” Internet
Mathematics, vol. 1, no. 3, pp. 335-380, 2004.

[6] G. Jeh and J. Widom, “Simrank: a measure of structural-context similar-
ity,” in KDD, 2002, pp. 538-543.

[7]1 Y. Liu, M. Liu, X. Peng, C. Treude, Z. Xing, and X. Zhang, “Generating
concept based API element comparison using a knowledge graph,” in
ASE 2020.

[4

—

[8] “Openapidocgen2,” Aug. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3984658
[9] “Openapidocgen2 frontend,” Aug. 2020. [Online]. Available:

https://doi.org/10.5281/zenodo.3984750

Zhttps://github.com/JabRef/jabref/releases/tag/v5.0-alpha
3docs.jabref.org

https://www.researchgate.net/publication/346595612

