See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328906280

Improving API Caveats Accessibility by Mining API Caveats Knowledge Graph

Conference Paper - September 2018

DOI: 10.1109/ICSME.2018.00028

CITATIONS
33

7 authors, including:

Hongwei Li
. Jiangxi Normal University

13 PUBLICATIONS 101 CITATIONS

SEE PROFILE

k. XinPeng
Fudan University

119 PUBLICATIONS 1,234 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot SE Text2KnowledgeGraph View project

roect Knowledge Research View project

All content following this page was uploaded by Hongwei Li on 24 December 2018.

The user has requested enhancement of the downloaded file.

READS
1,016

Zhenchang Xing
Nanyang Technological University

156 PUBLICATIONS 3,242 CITATIONS
SEE PROFILE
Mingwei Liu

Fudan University

10 PUBLICATIONS 64 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/328906280_Improving_API_Caveats_Accessibility_by_Mining_API_Caveats_Knowledge_Graph?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/328906280_Improving_API_Caveats_Accessibility_by_Mining_API_Caveats_Knowledge_Graph?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SE-Text2KnowledgeGraph?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Research?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongwei-Li-9?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongwei-Li-9?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Jiangxi-Normal-University?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongwei-Li-9?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenchang-Xing?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenchang-Xing?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenchang-Xing?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xin-Peng-12?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xin-Peng-12?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fudan_University2?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xin-Peng-12?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fudan_University2?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mingwei-Liu-4?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hongwei-Li-9?enrichId=rgreq-a84a22d8fb8882bbafc0693068c3e49c-XXX&enrichSource=Y292ZXJQYWdlOzMyODkwNjI4MDtBUzo3MDczNDk3OTQ3ODMyMzVAMTU0NTY1Njc0MTMzNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Improving API Caveats Accessibility by Mining
API Caveats Knowledge Graph

Hongwei Li*, Sirui Lif, Jiamou Sun', Zhenchang Xing’, Xin Peng?, Mingwei Liuf, Xuejiao Zhao®

*School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China
TResearch School of Computer Science, CECS, Australian National University, Canberra, Australia
School of Computer Science, Fudan University, Shanghai, China
§School of Computer Engineering, Nanyang Technological University, Singapore, Singapore

lihongwei@jxnu.edu.cn, {u5831882, u5871153} @anu.edu.au, zhenchang.xing@anu.edu.au,
{pengxin, 17212010022} @fudan.edu.cn, xjzhao@ntu.edu.sg

Abstract—API documentation provides important knowledge
about the functionality and usage of APIs. In this paper, we focus
on API caveats that developers should be aware of in order to
avoid unintended use of an APL. Our formative study of Stack
Overflow questions suggests that API caveats are often scattered
in multiple API documents, and are buried in lengthy textual
descriptions. These characteristics make the API caveats less
discoverable. When developers fail to notice API caveats, it is
very likely to cause some unexpected programming errors. In this
paper, we propose natural language processing(NLP) techniques
to extract ten subcategories of API caveat sentences from API
documentation and link these sentences to API entities in an API
caveats knowledge graph. The API caveats knowledge graph can
support information retrieval based or entity-centric search of
API caveats. As a proof-of-concept, we construct an API caveats
knowledge graph for Android APIs from the API documentation
on the Android Developers website. We study the abundance of
different subcategories of API caveats and use a sampling method
to manually evaluate the quality of the API caveats knowledge
graph. We also conduct a user study to validate whether and how
the API caveats knowledge graph may improve the accessibility
of API caveats in API documentation.

Index Terms—API caveats, Knowledge Graph, Coreference
Resolution, Entity Linking

I. INTRODUCTION

API documentation, such as Java API Documentation and
Android Developers websites, is an important resource for
developers to learn API usage. They provide important in-
formation about not only the declaration of APIs but also the
purpose, functionality, quality attributes, and usage directives
of APIs [1], [2]. A lot of research has been done on the quality
of API documentation [3|]—[7]] and the traceability recovery of
API documentation [8[]-[|13]]. Techniques have been developed
to recommend API documentation [8]], [9]], [[14], generate API
documentation [[15]], [[16]] or enhance API documentation with
crowd knowledge [[17], [[18].

In this paper, we are concerned with a much less explored
issue of API documentation, i.e., the accessibility of API
documentation. Our point is that good and well-maintained
API documentation does exist, like the website resources as
Java API Documentation, Android Developers. However, can
developers effectively access the relevant API usage knowl-
edge in these documents? According to the taxonomy of

knowledge types in API documentation defined by Maalej and
Robillard [1]], we focus on the accessibility of “directives” in
this paper. As such API usage directives “specify what users
are allowed/not allowed to do with the API element” [1]],
overlooking them would likely to incur unexpected program
behaviors or errors. To emphasize the fact that such directives
are contracts, constraints, and guidelines of API usage that
developers should be aware of [2], we call them as API caveats
in this paper.

To get a sense of the potential accessibility issue of API
caveats in API documentation, we conduct a formative study of
20 randomly-sampled, most-viewed (view counts in top 1%),
highly up-voted (votes in top 1%) Stack Overflow questions
(see the appendix table of Statistics of the 20 examined
StackOverflow Question. The questions we examine have
been viewed at least 22,866 times (Why onRestorelnstate()
never gets called) and up to 943,800 times (How do I fix
android.os.networkOnMainThreadException), which indicate
that they are common issues that developers frequently en-
counter. For 8 out of the 20 question we examine, their answers
directly quote some API caveats in API documentation, and
for 16 of the 20 questions, their answers paraphrase some API
caveats in API documentation. Furthermore, for 12 of the 20
questions, their answers provide the URL to the relevant API
document. Although by no means conclusive, this formative
study suggests that many programming issues that affect
millions of developers could be avoided if developers were
aware of relevant API caveats in API documentation.

We cannot rule out the factor that developers fail to read
API documentation carefully enough, but earlier studies reveal
that documentation fragmentation does make the information
less discoverable [7[]. Our formative study shares the similar
observation: we observe that 80% questions involve API
caveats of more than one API and 50% questions involve
API caveats from multiple documents. Furthermore, although
it often looks very clear when an API caveat is quoted in an
answer to a programming-issue question, the API caveat may

IThe Table can be found at https://github.com/Text2KnowledgeGraph/data/
blob/master/Statistics %200t %20the %2020%20examined %20StackOverflow %
20Questions.pdf]

http://www.oracle.com/technetwork/java/javase/documentation/api-jsp-136079.html
https://developer.android.com/index.html
http://www.oracle.com/technetwork/java/javase/documentation/api-jsp-136079.html
https://developer.android.com/index.html
https://stackoverflow.com/questions/5574462/why-onrestoreinstancestate-never-gets-called
https://stackoverflow.com/questions/5574462/why-onrestoreinstancestate-never-gets-called
https://stackoverflow.com/questions/6343166/how-do-i-fix-android-os-networkonmainthreadexception
https://stackoverflow.com/questions/6343166/how-do-i-fix-android-os-networkonmainthreadexception
https://github.com/Text2KnowledgeGraph/data/blob/master/Statistics%20of%20the%2020%20examined%20StackOverflow%20Questions.pdf
https://github.com/Text2KnowledgeGraph/data/blob/master/Statistics%20of%20the%2020%20examined%20StackOverflow%20Questions.pdf
https://github.com/Text2KnowledgeGraph/data/blob/master/Statistics%20of%20the%2020%20examined%20StackOverflow%20Questions.pdf

not be noticeable in a lengthy description of various types of
API knowledge in API documentation [1]], [[19], [20]. For the
API caveats causing programming issues in the 20 examined
questions, they are buried in documents from 1,412 to 73,269
words. That is, the post mortem discovery of an API caveat
in a Q&A website after something wrong happened is much
easier than bewaring of the API caveat beforehand to avoid
the mistakes in the first place.

In this paper, we tackle the accessibility issue of API caveats
revealed in our formative study by mining an API caveats
knowledge graph from multiple sources of API documentation.
We construct an API skeleton graph of APIs and regard
an API (e.g., class, method, field) as an entity (node) and
their declared relations (edges) by parsing semi-structured API
reference documentation (e.g., Android API reference). We
define three categories of API caveats (i.e., explicit, restricted,
generic) based on the literature survey [2], [21]-[25] and our
own observation of API caveats. We develop corresponding
sentence syntactic patterns to extract API caveat sentences
from the textual description of APIs. We apply co-reference
resolution technique [26]]-[29] and declaration-based heuristic
to resolve the pronouns in these sentences to the corresponding
APIs. We develop hyperlink-based, declaration-based and open
linking methods to link API caveat sentences with API entities.
As a result, we obtain an API caveats knowledge graph. Based
on this knowledge graph, we can recommend a list of API
caveats for the API(s) of interest (e.g., mentioned in a search
query, discussed in a web page, or used in code).

We construct a proof-of-concept API caveats knowledge
graph from the API documentation on the |Android Developers
website. The resulting knowledge graph contains 175,538
API entities and 160,112 unique API caveat sentences. Our
abundance analysis of API caveats suggests that most of the
API caveats (about 78%) are generic sentences without explicit
caveat indicators. This could explain why API caveats are
hard to notice in API documentation. Our manual examination
of the resulting knowledge graph confirms the accuracy of
extracting API caveat sentences, resolving co-references in
API caveat sentences, and linking API caveat sentences to
APIs. Our user study shows that searching API caveats in an
API caveats knowledge graph can significantly improve the
accessibility of API caveats, compared with directly searching
API caveats in API documentation.

This paper makes the following contributions:

o We conduct a formative study of Stack Overflow ques-
tions to investigate the accessibility issue of API caveats
in API documentation.

o We empirically develop a taxonomy of API caveats in
API documentation, and develop an NLP approach to
construct an API caveats knowledge graph from API doc-
umentation. The resulting knowledge graph can support
entity-centric and Information Retrieval (IR) based search
of API caveats.

o We construct a proof-of-concept API caveats knowledge
graph from the API documentation on the Android De-
velopers| website and conduct a series of experiments to

evaluate the quality of the resulting knowledge graph and
its ability to improve the accessibility of API caveats.

II. FORMATIVE STUDY

In this formative study, the first author reads a set of
Stack Overflow questions, identifies the programming issues
in the questions, summarizes the solutions in the answers, and
determines whether the solutions are covered by some API
caveats in API documentation. The second author validates
the analysis results by the first author, and the two authors
discuss and come to an agreement on the final results.

As we are concerned with programming issues and their
root causes, we particularly search for questions whose title is
a negative sentence (e.g., not work, not being called) and/or
contains error-indicating terms such as “error”, “exception”,
“fail”, “fix”. We limit our search to questions tagged with An-
droid as our current proof-of-concept implementation targets
at Android APIs. We sort the questions by their view counts
and votes, and randomly select 20 questions that have view
counts in top 1% and votes in top 1%. We select high-view-
count and high-vote questions because this study is about API
caveats that may affect a large number of developers, rather
than some unique programming issues.

For each selected question, we read all its answers with
positive votes, as well as the comments on the question and
the answers, to summarize the solutions for the programming
issue(s) in the question. We then try to determine whether
the solutions are due to some overlooked API caveats in API
documentation. This can be easily determined if the answer
directly quotes some API documents and/or references to rele-
vant API documents. If such explicit indicators are not present,
we identify the APIs mentioned in the Q&A discussion and
read relevant API documents to make a decision.

Table [l and Table show the two examples of our
analysis results. In Table [l the question we examine is
“SharedPreferences.onSharedPreference-ChangeListener not
being called”. The programming issue is ‘“the listener is
not always called”. The answer suggests to “keep a strong
reference to the listener” and this solution is actually an
API caveat explicitly explained in the reference document of
SharedPreferences. Table [II| shows a more complex problem
about “FileUriExposedException: ... exposed beyond app
through Intent.getData()”. This causes “The app crashes
when opening a file from the SD card” and “The app cannot
open files in root directories”. The answers suggest several
solutions such as “Replace file:// URI with content:// URI” or
using FileProvider API. Again, the programming issues are
caused by overlooking some API caveats and the solutions
are just paraphrases of these API caveats.

As summarized in the appendix table of Statistics of the
20 examined StackOverflow Questionsm, the 20 examined
questions cover a wide range of programming tasks and issues.
These questions have been viewed in total 4,170,612 times and
have received in total 6,296 votes. This reveals the developers’
common interests in the API knowledge in these questions. We

https://developer.android.com/reference/classes.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html

TABLE I
EXAMPLE QUESTION 1

Question SharedPreferences.onSharedPreferenceChangeListener
not being called consistently
Key Issues The listener is not always called.
Solutions Keep a strong reference to the listener.
API Caveats Caution: ... You must store a strong reference to the
listener, or it will be susceptible to garbage collection.
TABLE II
EXAMPLE QUESTION 2
Question android.os.FileUriExposed Exception:
file:///storage/emulated/0/test.txt exposed beyond
app through Intent.getData()
1. The app crashes when opening a file from the SD card.
Key Issues 2. The app cannot open files in root directories.
1. Replace file:// URI with content:// URL.
Solutions 2. Use FileProvider class to make files accessible.
3. Create class inheriting FileProvider to avoid conflict.
API Caveats |1. The exception that is thrown when an application

exposes a file:// Url to another app.

2. Instead, apps should use content:// Uris so the platform
can extend temporary permission for the receiving app to
access_the resource.

3. FileProvider ... facilitates secure sharing of files asso-
ciated with an app by creating a content:// Uri for a file
instead of a file:// Uri.

4. If you want to override any of the default behavior of
FileProvider methods, extend the FileProvider class and
use the fully-qualified class name ...

identify 1-5 solutions for the programming issue in each ques-
tion. According to our analysis, the solutions for 11 questions
are fully covered by the API caveats in the documentation of
APIs discussed in the questions and answers, and the solutions
of the other 5 questions are partially covered by the relevant
API caveats. Only for 4 questions (Id: 14, 15, 18, 19), we
do not identify any API caveats in relevant documentation.
Among the 20 examined questions, 40% contain direct quote
(DQ) of some API caveats from API documentation, 60%
provide the URLs of relevant API documents (ER), and 80%
contains the paraphrases of some API caveats (CP). These
statistics suggest that many programming issues that affect
millions of developers could be avoided if developers were
aware of relevant API caveats in API documentation.

To understand the challenges for developers to notice API
caveats in API documentation, we further examine the number
of APIs involved (#API) in the programming issue(s) of each
question, the number of documents (#Doc) that contain API
caveats relevant to the programming issue(s), and the number
of words (#Words) in these documents. We find that 80%
questions involve API caveats of more than one API and
50% involves API caveats from two or more documents.
Furthermore, for 30%, 30% and 40% questions, relevant
API caveats are in documents with less than 5,000 words,
5,000 to 20,000 words, and over 20,000 words, respectively.
Documentation fragmentation and the lengthy description in
API documentation could become the barrier for developers to
notice important caveats beforehand to avoid the programming
issues. Our observation is consistent with some API learning
obstacles identified in the survey of developers [7].

Summary: Our formative study shows that many program-
ming issues could actually be avoided if developers were aware
of relevant API caveats in API documentation. Unfortunately,
developers mostly discover API caveats post mortem after
something wrong happened, rather than bewaring of the API
caveats beforehand to avoid the mistakes in the first place.

III. RELATED WORK

There has been much research on the quality of API
documentation [4]-[6], [9], [30], [31]], which investigates the
issues like the absence, incompleteness, and staleness of API
documents. Many techniques have been proposed to address
these issues, for example, by automatically generating API
documents or keeping the documents up-to-date [_8], [[15], [32].
As the online Q&A websites become popular, they provide
an alternative way of documentation, i.e., crowd documen-
tation [17[], [18], [33[]. Studies [34[-[36] show that crowd
documentation is a good complement to the traditional API
documentation.

In addition to the quality of API documentation, another
well-studied aspect is the traceability of API documents. For
example, Bacchelli et al. [37], [38]] develop an API extrac-
tion and linking infrastructure, called Miler. Dagenais and
Robillard [10] develop RecoDoc to extract Java APIs from
several learning resources (formal API documentation, tutorial,
forum posts, code snippets) and then perform traceability link
recovery across different sources. Subramanian et al. [8] use
code context information to link an API mention in a partial
code fragment to APIs in a knowledge base. Ye et al. [39]
propose mention-mention and mention-entity similarity met-
rics for linking API mentions in natural language sentences
to API entities. Their work inspires our open linking method
to link API caveat sentences to APIs. These existing works
only recover traceability links, but our approach organizes API
entities, their declared relations, and associated API caveats in
a knowledge graph.

Compared with the studies on the quality and traceability
of API documentation, the accessibility of API documentation
is much less explored. Some recent works [19], [40] aim
at fine-grained information retrieval at passage or sentence-
level, which could improve the accessibility of API knowl-
edge in lengthy documents. Some NLP techniques used in
these works, such as sentence type identification, pronoun
resolution, API mention discovery, provide inspirations for the
design of our method. But different from these fine-grained
text retrieval methods, our method supports the search of API
caveats based on the API caveats knowledge graph.

The works that are most close to ours are the two empirical
studies on the knowledge types in API documentation [1[],
[2]. Our definition of API caveats is inspired by these two
studies. The development of syntactic patterns for extracting
API caveats mainly absorbs and extends the API-directives
patterns in [2]. However, these two studies focus on empirical
observations of API knowledge in API documentation, with no
specific application objectives. In contrast, our work proposes

https://stackoverflow.com/questions/2542938/sharedpreferences-onsharedpreferencechangelistener-not-being-called-consistently
https://stackoverflow.com/questions/2542938/sharedpreferences-onsharedpreferencechangelistener-not-being-called-consistently
https://developer.android.com/reference/android/content/SharedPreferences.html#registerOnSharedPreferenceChangeListener(android.content.SharedPreferences.OnSharedPreferenceChangeListener)
https://developer.android.com/reference/android/content/SharedPreferences.html#registerOnSharedPreferenceChangeListener(android.content.SharedPreferences.OnSharedPreferenceChangeListener)
https://stackoverflow.com/questions/38200282/android-os-fileuriexposedexception-file-storage-emulated-0-test-txt-exposed
https://stackoverflow.com/questions/38200282/android-os-fileuriexposedexception-file-storage-emulated-0-test-txt-exposed
https://stackoverflow.com/questions/38200282/android-os-fileuriexposedexception-file-storage-emulated-0-test-txt-exposed
https://developer.android.com/reference/android/os/FileUriExposedException.html
https://developer.android.com/reference/android/os/FileUriExposedException.html
https://developer.android.com/reference/android/os/FileUriExposedException.html
https://developer.android.com/reference/android/os/FileUriExposedException.html
https://developer.android.com/reference/android/os/FileUriExposedException.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html

Mining Phrase
AP Reference __ Semi-structured H BuidAPI |,/ Skﬁ,’::un /

Documentation | 7 AP Declaratioin /| Skeleton Graph |7 S0 ’Wl
N Knowledge Graph

) Linking API
Extract API Caveat |_, //
Sentences /

Caveat
Sentences to
APIs

AP Textual
Descriptions /

API Caveat
Senterences /

Coreference
Resolution

APl Tutorials '

Class . AP Caveats ™,
KG \

xception) | —sio

Search Phrase

A API-related
A Question

API Caveats &

Original Document

IR-based or Entity-centric
API caveats Search

LA
- [caveat T [caveat2) 4)
- S [caveat)

(Field

caveat 4}

Fig. 1. An Overview of Our Approach

practical methods to extract API caveats from API documen-
tation and organize the extracted knowledge in a knowledge
graph for improving the accessibility of API caveats.

IV. THE APPROACH

Fig.[I|presents the key steps in our approach, which contains
two main parts: mining API-caveats knowledge graph from
API documentation and searching API caveats based on the
mined knowledge graph. Given a set of API documentation,
the mining process consists of four steps: preprocess input doc-
umentation (Section [[V-A)), build an API skeleton graph from
semi-structured API reference documentation (Section [[V-B),
extract API caveat sentences from API textual descriptions
(Section [[V-C), and construct the API-caveats knowledge
graph by linking API caveat sentences to relevant APIs (Sec-
tion[[V-D)). Based on the mined API-caveats knowledge graph,
the search engine can recommend API caveats for the API(s)
of interests (Section [[V-EJ).

A. Input and Preprocessing

In this work, we consider two types of API documentation:
API reference documentation and API tutorials. API reference
documentation, such as Android API reference| and Java SDK
API specification provide a semi-structured declaration of
APIs and explain the purpose, functionality, and caveats of
APIs. API tutorials, such as |Android Developer Guides |,
Java Tutorials| explain and demonstrate how to use an API
in different tasks.

We crawled online API documentation using the web
crawling tool such as BeautifulSoup ﬂ We consider each
crawled web page as an API document. As we are interested
in the semi-structured API declarations and the API textual
descriptions, we remove other document contents from the
crawled web pages, for example, code snippets, program
execution outputs, images. We observe that such document
contents in official API documentation are usually contained.
Such document contents are contained in HTML tags, such
as <code>, <image> and <script>, which can be easily
identified and removed.

API textual descriptions have to be tokenized for fur-
ther natural language processing(NLP). API tokens are usu-
ally out of natural language vocabulary and contain special
characters such as “”, “()”, “[]”, “_”. For example, the

Zhttps://www.crummy.com/software/Beautiful Soup/

method declaration sentence “void setOnBufferAvailableLis-
tener (Allocation.OnBufferAvailableListener callback) Set a
notification handler for USAGE_IO_INPUT” contains the
method signature “void setOnBufferAvailableListener (Alloca-
tion.OnBufferAvailableListener callback)” and the field name
“USAGE_IO_INPUT”. A general English tokenizer will break
API tokens into several tokens, such as “USAGE”, «“_”, “TO”,
“ 7, and “INPUT”. This breaks normal sentence integrity and
will negatively affect the subsequent NLP steps. Therefore,
we expand the software-specific tokenizer developed by Ye et
al. [41] for extracting API mentions in natural language sen-
tences. Our software-specific tokenizer will retain the integrity
of API tokens during text tokenization. After tokenization, we
use Stanford CoreNLIﬂ to split texts into sentences.

B. Building API Skeleton Graph

We first build an API skeleton graph from API refer-
ence documentation. API reference documentation is semi-
structured, and they organize APIs into different sections.
They also provide the full-qualified name of APIs. Rela-
tions between APIs, such as inheritance, data type reference,
thrown exception are hyperlinked by the relevant API’s URL.
Our approach exploits such semi-structured information in
API reference documentation to extract API entities and
declared relations between APIs. In this work, we consider
classes, interfaces, fields, methods, and parameters. Relations
include containment, inheritance/implementation, field data
type, method return type, method parameter type, and method-
thrown-exception. We build an API skeleton graph using the
extracted API entities and their relations. Each API entity
in the graph is identified by its fully qualified name. Each
API entity can also be identified by its unique URL in API
reference documentation. This helps to identify API entities
that are hyperlinked in textual descriptions.

C. Extracting API Caveat Sentences

An API caveat is a sentence that specifies some constraint
or guideline of API usage [2]. We define a taxonomy of API
caveats and develop corresponding sentence syntactic patterns
to extract API caveat sentences from API textual descriptions.
The taxonomy and syntactic patterns have been developed
based on the literature survey [2], [21]-[25] and our own
observation of API caveats in API documentation.

As summarized in Table our taxonomy contains three
general categories, each of which has some subcategories:
explicit - error/exception, recommendation, alternative, imper-
ative, note; restricted - conditional, temporal; and generic -
affirmative, negative, emphasis. Each subcategory has some
distinctive syntactic patterns. A syntactic pattern is defined as
a regular expression of some tokens. When a sentence matches
a pattern, the sentence will be categorized as the corresponding
subcategory. A matching is case-insensitive. Following [2], we
use word stem to match different infected variants of a word,

for example “assum*” for “assume”, “ assuming”.

9 <

assumes”,

3https://stanfordnlp.github.io/CoreNLP:

https://developer.android.com/reference/classes.html
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
https://developer.android.com/guide/index.html
https://docs.oracle.com/javase/tutorial/
https://www.crummy.com/software/BeautifulSoup/
https://stanfordnlp.github.io/CoreNLP

TABLE III
API-CAVEATS CATEGORIES AND SYNTACTICS PATTERNS

Category Subcategory Syntactic Pattern Examples
“insecure”, “susceptible”, “error”,
. null”, “exception”, “susceptible
Error/Exception . > >
P “unavailable”, “not thread safe”,
“illegal”, “inappropriate”, “insecure”
“deprecate”, “better/best to”,
Explicit Recommendation “recommended”, “less desirable”
“discourage”
Alternative “instead of”,“rather than”,“otherwise”
Imperative “do not”
p
Note “note that”, “notably”, “caution”
Conditional “under the condition”, “whether ...”,
Restricted “if .., “when ...”, “assume that ...”
Temporal “before”, “after”
. must”, “should”, “have to
Affirmative ’ ’ ’
Generic “need to”
Negative “do/be not ...”, “never”
Emphasis “none”, “only”, “always”

As a sentence may match several patterns at the same time,
the taxonomy is not exclusive. That is, an API caveat sentence
may belong to several subcategories.

Next, we explain each subcategory as follows: name, de-
scription, syntactic patterns, and typical examples. In the
examples, we highlight in bold font the matching syntactic
pattern for the subcategory under discussion and underline the
syntactic patterns for other subcategories.

1) Explicit API Caveats: Error/exception caveats explic-
itly mention programming errors or unwanted behaviors. Syn-
tactic patterns match error-indicating terms that are com-
monly used to describe programming errors, such as ‘“er-
ror”, “exception”, “null”, “susceptible”, “unavailable”, “not
thread safe”, “illegal”, “insecure”. Typical examples include:
“FileUriExposedException is thrown when an application
exposes a file://Uri to another app”, “Camera class is not
thread safe ..”, “You must store a strong reference to the
listener, otherwise it will be susceptible to garbage collection”.

Recommendation caveats explicitly recommend what to do
or what not to do. Syntactic patterns match terms/phrases such
as “deprecate”, “better/best to”, “highly recommended”, “dis-
courage”, “less desirable”. Typical examples include: “you are
better off using JoblntentService, which uses jobs instead of
services ...”, “If ..., it is highly recommended you use the
various APIs provided by the java.util.concurrent package ...”,
“This exposure is discouraged since the receiving app may
not have access to the shared path”.

Alternative caveats explicitly mention an alternative or
substitute. Syntactic patterns match phrases such as “instead
of”, “rather than”, “otherwise”. Typical examples include:
“You must call release() when you are done using the camera,
otherwise it will remain locked and be unavailable to appli-
cations”.

Imperative caveats explicitly tell developers not to do
something. Syntactic patterns match imperative expressions

113

“do not”. Typical examples include: “Do not pass a resource
ID”, “Do not confuse this method with activity lifecycle
callbacks such as onPause()...”.

Note caveats explicitly point out some information that
developers should pay attention to. Syntactic patterns match
terms like “note that”, “notably”, “caution”. Typical examples
include: “Note: For all activities, you must declare your intent
filters in the manifest file”, “Caution: On some devices, this
method may take a long time to complete. It is best to ...”.

2) Restricted API Caveats: Conditional caveats identify
some specific conditions or circumstances for using an APL
Syntactic patterns match conditional clause such as “if ...”,
“when ...”. Typical examples include: “if everything is hap-
pening in the Ul thread, performing long operations such
as network access or database queries will block the whole
UI”, “When using a subclass of AsyncTask to run network
operations, you must be cautious ...”.

Temporal: API caveats in this subcategory identify the
order of some operations. Syntactic patterns match temporal
words such as “before”, “after”. Typical examples include:
“This may be null if the service is being restarted after its
process has gone away”, “... you don’t create a memory leak
... before the AsyncTask finishes its background work”.

3) Generic API Caveats: Affirmative caveats indicate
something that developers must or should do. Syntactic pat-
terns match terms/phrases like “must”, “should”, “have to”,
“need to”. Typical examples include: “Note that not all Type-
face families actually have bold and italic variants, so you may
need to use setTypeface(Typeface, int) ...”, “The identifier does
not have to be unique in View, but it should be positive”.

Negative caveats indicate something that developers should
avoid or that an API does not do. Syntactic patterns match
negative expressions such as “do/be not ..”, “never”. We
detect negative expressions by sentence dependency parsing
and then identifying a syntactic role of negation. Typical
examples include: “StrictMode is not a security mechanism
and is not guaranteed to find all disk or network accesses.”
“Any activities that are not declared there will not be seen
by the system and will never be run”.

Emphasis caveats emphasize some particular conditions or
operations. Syntactic patterns match qualifier words such as
“none”, “only”, “always”. Typical examples include: “Only
objects running on the UI thread have access to other objects
on that thread”, “if you do not declare any intent filter for an
activity, then it can be started only with an explicit intent”.

D. Building API Caveats Knowledge Graph

Given the API skeleton graph and the API caveat sentences,
the last step of the mining process is to link the API caveat
sentences to relevant APIs in the API skeleton graph. As a
result, we obtain an API caveats knowledge graph.

1) Co-reference Resolution: APIs are not always mentioned
by their API names in API caveat sentences, because develop-
ers commonly use pronouns to represent APIs in a paragraph
of explanations. For example, the description of the “an-
droid.app.Activity.startActivity” states that “This startActivity

method implementation overrides the base version, ... It throws
ActivityNotFoundException if there was no Activity found to
run the given Intent.” According to our API-caveat-sentence
syntactic patterns, the second sentence will be extracted as an
API caveat sentence that belongs to conditional and explicit-
exception categories. The pronoun “it” of the second sentence
refers to the “startActivity” method in the first sentence.

Due to the wide presence of such co-references in API
caveat sentences, linking only explicit API mentions in API
caveat sentences to API entities would miss many important
links between API caveat sentences and APIs. For example, we
can link the above caveat sentence to “ActivityNotFoundEx-
ception” and Activity” based on the explicit API mentions in
the sentence, but we cannot link this sentence to the method
“startActivity” that throws the exception. To recover as many
links between API caveat sentences and APIs as possible,
we use co-reference resolution technique (as implemented by
Stanford CoreNLPE]) to resolve the pronouns in API caveat
sentences to the APIs that the pronouns represent in the
paragraphs from which the caveat sentences are extracted.

Furthermore, when explaining an API in API reference doc-
umentation, it is a common practice to refer to the API being
explained as “this class”, “this method”, etc. For example, un-
der the declaration section of “Activity.onActionModeStarted”,
the description states that “Activity subclasses overriding
this method should call the superclass implementation. If you
override this method you must call through to the superclass
implementation.” Co-reference resolution tools cannot resolve
this type of co-reference because the corresponding API does
not appear in the surrounding texts. However, we can replace
the co-references like “this method” with the name of the API
declared in the corresponding API section. We refer to this
method as declaration-based co-reference resolution.

2) Linking API Caveat Sentences to API Entities: We dis-
tinguish three linking scenarios: hyperlink based, declaration
based, and open linking.

Hyperlink based: If an API caveat sentence contains a
hyperlink to the URL of an API reference document, our
approach will identify the API at the URL and link the
sentence to the corresponding API. For example, as the “Ac-
tivityNotFoundException” in the caveat sentence “It throws
ActivityNotFoundException if ...” is hyperlinked to the refer-
ence page of “ActivityNotFoundException”, we can then link
this sentence to the “ActivityNotFoundException”.

Declaration based: If an API caveat sentence is from API
reference documentation and it mentions the name (could be
simple or qualified) of the API declared in the API section
from which the sentence is extracted, our approach will link
the caveat sentence to the corresponding API. Sometimes, an
API caveat sentence from the API section may not explicitly
mention any APIs. For example, from the declaration section
of the method “View.setld(int)”, our approach extracts two API
caveat sentences “Do not pass a resource ID” and “The iden-
tifier should be a positive number”. Although these sentences

4https://stanfordnlp.github.io/CoreNLP/coref.html

do not explicitly mention “View.setld(int)”, it is intuitive to
link such caveat sentences to the corresponding APIs.

Open linking: First, our method uses Open Information
Extraction (OpenlE) softwareE] to extract Subject-Verb-Object
(SVO) triples from the API caveat sentences. For example,
given the API caveat sentence “You must call release() ...”,
OpenlE extracts the subject “You”, verb phrase “must call”,
and object “release()”. We use OpenlE because it is the best
performing tool to extract SVOs for a similar task to ours, i.e.,
building a task knowledge graph [42].

Next, our method attempts to link the Subject and Object
of the SVO triples to some APIs, and this essentially links
the corresponding API caveat sentences to relevant APIs.
First, if a Subject (or Object) matches an API name in the
knowledge graph (e.g., “release()” in the above SVO example),
we consider the Subject (or Object) as a candidate API
mention and the name-matching API as a candidate API. Then,
following the API linking method by Ye et al. [39], we adopt
mention-mention similarity and mention-API similarity to link
a candidate API mention to an APIL.

For a candidate API mention, mention-mention similarity
examines the API document from which the API caveat
sentence is extracted and checks if there are some same API
mentions that can be linked to an API using the hyperlink- or
declaration-based method. If so, the candidate API mention
will be linked the same API. The underlying intuition is that
the same API mentions in an API document should refer to the
same API. For example, the hyperlinked mention of “Activi-
tyNotFoundException” will help to link other non-hyperlinked
mentions of “ActivityNotFoundException” in the same API
document to the class “ActivityNotFoundException”.

If mention-mention similarity cannot link the candidate
API mention to an API, we then use mention-API similarity,
which measures the textual relevance between the paragraph
from which the API caveat sentence is extracted and the
description of a candidate API whose name matches the
Subject (or Object). If multiple candidate APIs exist, the one
with the highest relevance score is selected. If the mention-
API similarity of the selected API is above the user-defined
threshold, the candidate API mention is linked to this API.

Finally, we link the API caveat sentences that are not linked
to any APIs by the three linking methods to an artificial API
entity as a general corpus of API caveats. That is, all extracted
caveat sentences are accessible in the knowledge graph, even
they may not be linked to specific APIs.

E. Searching for API Caveats in the Knowledge Graph

Traditionally, developers need to first find relevant API
documents and then read through them to find the API caveats.
Our API caveats knowledge graph enables a different informa-
tion seeking paradigm, in which developers can quickly find
the API caveats relevant to the programming issue they have,
and then learn more about these caveats in the documents.

Our approach supports two modes of searching for API
caveats. First, we consider all API caveat sentences as a

Shttps://nlp.stanford.edu/software/openie.html

https://stanfordnlp.github.io/CoreNLP/coref.html

text corpus, and use traditional IR techniques to search this
corpus of API caveats given an input query. Second, we
perform entity-centric search of API caveats for the API(s)
that developers are interested in, based on the API caveats
knowledge graph. The API(s) of interest can come from a
search query of some programming issues, a webpage that
a developer is reading, or some code that the developer is
writing. For example, given a search query “onActivityResult
is not being called in Fragment”, entity-centric search first
finds the API(s) mentioned in the query (“onActivityResult”
and “Fragment” in this example) by matching query terms
with the API names in the knowledge graph. It may also
collect the neighboring APIs of the mentioned API through
the declared relations between APIs in the knowledge graph,
for example, the declaring class “Activity” of the method
“onActivityResult”. It then measures the relevance of the
search query (or the webpage, the code) and the API caveats
of the collected APIs. Finally, it ranks and returns the top-N
relevant API caveats to the developer.

V. PROOF-OF-CONCEPT IMPLEMENTATION

We implement a proof-of-concept tool of our approach using
the API documentation from the Android Developers| website.
We crawled 11,352 web pages from this website, including
not only 6,042 API reference documentation, but also 5,310
other types of API tutorials such as “Training”, “API Guide”,
“Samples”, “Topics”. The crawled web pages contain a huge
volume of API textual descriptions (about 600,000 sentences
and over 7.2 million words after text preprocessing). Using this
API documentation, we build an API caveats knowledge graph
for Android APIs. The resulting knowledge graph contains
175,538 API entities, 160,112 unique API caveat sentences,
and about 1.1 million links between API caveat sentences and
APIs (see Section for details).

What will cause FileUriExposedException? Go

o This means that apps targeting Android 7.0 (API level 24) and higher cannot share private files by name,
and attempts to share a "file://" URI will result in a FileUriExposedException to be thrown.
o Therefore, attempts to pass a file:// URI trigger a FileUriExposedException.

exception.
¢ For more recent apps targeting Android 7.0 (API level 24) and higher, passing a file:// URI across a

another app.

Fig. 2. The Search UI of the API Caveats Knowledge Graph

We implement a web interface for searching API caveats
in our knowledge graph (see Fig. [2). Developers can enter
a search query of some API-related question, for example,
“what will cause FileURLExposedException”. The application
searches the backend knowledge graph and returns a ranked
list of relevant API caveats. For example, the returned API
caveats in Fig. [2| reveal the root causes for FileURLEx-
plosedException. Developers can click an API caveat to view
it in its original API document. Note that the six returned
API caveats roughly describe the same thing, and they are
scattered in 5 documents with over 50,000 words. Being able
to directly finding API caveats can improve the accessibility

of API caveats in API documentation, without the need to read
through the fragmented and lengthy API documentation.

VI. EVALUATION

Our approach extracts and organizes various categories of
API caveats that are scattered in a large set of API documen-
tation into an API caveats knowledge graph. We report our
experiments to answer the three research questions about the
effectiveness and usefulness of our approach:

o« RQI1: What is the abundance of different subcategories

of API caveats in API documentation?

e RQ2: Can our approach accurately extract API caveat
sentences, resolve co-references in these sentences, and
link API caveat sentences to API entities?

e RQ3: Can our API caveats knowledge graph and API
caveats search improve the accessibility of API caveats,
compared with traditional documentation search?

A. Android API Caveats Knowledge Graph

In our experiments, we use our proof-of-concept Android
API caveats knowledge graph. This knowledge graph contains
175,538 API entities, including 10,916 classes / Interfaces /
Exceptions / Enums / Annotations, 28,167 fields, 46,672 meth-
ods and 89,783 parameters. Our approach extracts 160,122
unique API caveat sentences. As one API caveat sentence
may belong to two or more subcategories, we have in total
267,891 times of sentences by the 10 subcategories of API
caveats (see Table [II). 91,613 (57.2%) out of the 160,122
unique API caveat sentences have been linked to some APIs
in the knowledge graph. In total, the knowledge graph has
about 1.1 million links between API caveat sentences and
APIs, including 505,725 hyperlink-based, 282,419 declaration
based, and 306,500 open-linking links.

B. The Abundance of API Caveats (RQI1)

Motivation: our approach extracts a large number of API
caveat sentences of ten subcategories. We first would like to
get a good understanding of the abundance of different cate-
gories of API caveats. This will shed the light on the potential
accessibility issue of API caveats in API documentation.
Approach: We count the number of each subcategory of
API caveats. Inspired by the study of different kinds of API
directives [2], we adopt the ACFOR scale (Abundant, Com-
mon, Frequent, Occasional, Rareﬂ This scale is originated
from ecology for measuring species abundance within a given
area [43]]. The ACFOR scale is determined as follows. First,
we compute the average of abundance frequency A. We say
that a subcategory of API caveats is abundant if it appears
more than 2A, common if its frequency F' > 1.5A, frequent
if F > A, occasional if F' > 0.5A and rare otherwise.
Results: Table V] summarizes the number of API caveat
sentences for each subcategory, the abundance frequency
of each subcategory, and the ACFOR analysis results. The
average abundance frequency is 0.1. As such, restricted-
conditional and generic-affirmative caveats are abundance in

Shttp://en.wikipedia.org/wiki/Abundance_(ecology).

https://developer.android.com/index.html
http://en.wikipedia.org/wiki/Abundance_(ecology).

Android API documentation, generic-emphasis are common,
and generic-negative are frequent. These four subcategories ac-
count for 78.2% of all API caveats. Explicit-recommendation
is occasional and explicit-error/exception are close to occa-
sional. These two subcategories account for 11.7% of all
API caveats. The rest four subcategories (explicit-alternative,
explicit-imperative, explicit-note and restricted-temporal) are
rare, and they account for 10.1% of all API caveats.

Restricted-conditional and the three generic API caveats are
dominant in our knowledge graph. The fact that most of API
caveats do not have explicit caveat indicators could help
to explain why API caveats are hard to notice in the API
descriptions, especially the lengthy ones.

C. The Quality of API Caveats Knowledge Graph (RQ2)

Motivation: Three steps in the mining process of our approach
affect the quality of the resulting API caveats knowledge
graph. They are: extracting API caveat sentences by syntactic
patterns, co-reference resolution for API caveat sentences, and
linking API caveat sentences to APIs. We want to confirm the
accuracy of these three steps to build the confidence in the
quality of the resulting API caveats knowledge graph.
Approach: As we have a large number of API caveat sen-
tences to examine, we adopt a sampling method [44]]. Ac-
cording to [44], we examine the minimum number MIN
of data instances in order to ensure that the estimated pop-
ulation is in a certain confidence interval at a certain confi-
dence level. This MIN can be determined by the formula:
MIN = no/(1 4 (ng — 1)/populationsize). ny depends on
the selected confidence level and the desired error margin:
no = (Z2 * 0.25)/e?, where Z is a confidence level’s z-
score and e is the error margin. For each mining step, we
examine M IN instances of relevant data for the error margin
e = 0.05 at 95% confidence level. For each sampled API
caveat sentence, the two authors first independently evaluate its
accuracy (binary decision) for a respective mining step. Then,
we compute Cohen’s Kappa [45] to evaluate the inter-rater
agreement. For the API caveat sentences that the two authors
disagree, they have to discuss and come to a final decision.
Based on the final decisions, we compute the accuracy of each
respective mining step.

Results: Next, we report the data sampling and accuracy of
analysis results for the three mining steps respectively.

1) Accuracy of Extracting API Caveat Sentences: We per-
form accuracy analysis for each subcategory of API caveats.
Table |V|summarizes our analysis results. The column #MIN
is the number of API caveat sentences we randomly sample
and examine for each subcategory. This number is deter-
mined based on the number of API caveat sentences in each
subcategory and the above sampling formula. The annotator
determines if a sampled sentence is actually an API caveat or
not. The columns AA1 and AA2 show the accuracy results
determined by the two annotators independently, and the
column AF is the final accuracy for each subcategory after
resolving the disagreement. The column AC' is the average

TABLE IV
THE ABUNDANCE OF DIFFERENT SUBCATEGORIES OF API CAVEATS

Category Subcategory #N #F AAF ACFOR
Error/Exception 11,973 0.045 R
Recommendation 19,209 0.072 (0]

Explicit Alternative 4,032 0.015 R
Imperative 6,410 0.024 R

Note 8,183 0.031 0100 R

Restricted Conditional 70,404 0.263 A
’ Temporal 8,479 0.032 R
Affirmative 61,952 0.231 A

Generic Negative 36,136 0.135 F
Emphasis 41,113 0.153 C

Total: 267,891 1.000

#N: Numbers; #F: Frequency;, AAF: Average Abundance Frequency;
ACFOR: Abundant, Common, Frequent, Occasional, Rare
TABLE V
ACCURACY RESULTS OF EXTRACTING API CAVEAT SENTENCES

Category Subcategory MIN AAl AA2 AF AC
Error/Exception 373 99.73 100 99.73
Recommendation 377 100 100 100

Explicit Alternative 351 100 99.61 100 99.89
Imperative 363 99.72 97.52 99.72
Note 367 100 100 100

. Condition 383 100 100 100

Restricted 1 ooral 368 100 9783 100 0
Affirmative 382 99.48 99.74 98.95

Generic Emphasis 381 100 100 100 99.65
Negative 381 100 93.96 100

accuracy of the subcategories of a general category (i.e.,
explicit, restricted, or generic).

The Cohen’s kappa metric for each subcategory of API
caveats between the two annotators is all > 0.88, which indi-
cate almost perfect agreement between the accuracy decisions
of the two annotators. The lowest final accuracy after resolving
the disagreement is 98.95 for alternative caveats. The final
accuracy of six subcategories is 100. This high accuracy is
not surprising as the API caveat sentences are extracted using
carefully designed caveat-indicating syntactic patterns.

2) Accuracy of Co-reference Resolution: Based on the
number of API caveat sentences that require co-reference
resolution and the above sampling formula (see),
we randomly sample and examine 384 API caveat sentences.
The annotator determines if the co-reference in the sentence
has been correctly resolved to the corresponding API. The
Cohen’s kappa metric between the two annotators’ decisions is
0.97 which indicates almost perfect agreement. After resolving
the disagreements, the two annotators determine that the co-
references in 285 sentences have been correctly resolved, i.e.,
co-reference resolution accuracy is 285/384=74.22%. Among
these 285 sentences, 215 (75.44%) has been resolved by the
CoreNLP tool and the rest 70 (24.56%) has been resolved by
our declaration-based heuristic.

3) Accuracy of Caveat-Sentence-API Linking: As the
hyperlink-based linking is always accurate, we exclude them
from this analysis. Based on the number of declaration-based
linking and open linking instances and the above sampling for-
mula, we randomly sample and examine 384 and 384 caveat-

TABLE VI
TEN ANDROID API RELATED QUESTIONS IN OUR USER STUDY

Questions Relevant #API
API(s) caveats
1. What should I do to prevent registering the 2 2
receiver multiple times when I register a
receiver in onResume?
2. What will cause FileUriExposedException? 1 4
3. getColor method was deprecated. What API 1 2
should I use to replace this method?
4. Is StrictMode a secure mechanism? Why? 1 1
5. To set the dialog cancellable, should I use 2 1
Dialog.setCancelable or
DialogFragment.setCancelable? Why?
6. When should onPause and onStop be called? 4 3
7. Why the Intent in startService is null? 1 1
8. Is there any alternative background thread 3 2
management tools I can use besides
AsyncTask?
9. What will happen if I don’t call release after 2 3
using the Camera? And How can I release it?
10. What can getParentFragment method do from 1 1

within a nested fragment?

sentence-API links for the two linking scenarios respectively.
The annotator determines if the link correctly associates an
API caveat sentence to the corresponding API. The Cohen’s
kappa metric between the two annotators’ decisions is 99.74%
for the declaration-based linking and 98.70% for open linking,
respectively, which indicates almost perfect agreement. For
declaration-based linking, the final accuracy is 99.48%, and
for open linking, the final accuracy is 98.44%.

All the three knowledge graph construction steps are ac-
curate. This ensures the high quality of the resulting API
caveats knowledge graph.

D. The Improvement of API Caveats Accessibility (RQ3)

Motivation: The goal of our approach is to improve the
accessibility of API caveats by mining API caveat sentences
and constructing an API caveats knowledge graph. As such,
developers can directly search for API caveats, without the
need to read through the lengthy API documentation. We want
to evaluate how well we achieve this goal.
Approach: We conduct a user study to compare the effec-
tiveness of searching for API caveats using a document-based
search method and our knowledge-graph based search method.
Subject questions: We use Android APIs and their caveats
as the subject to search. Based on the 20 Stack Overflow
questions examined in the formative study, the two authors
collaboratively formulate 10 Android API related questions.
For each question, the two authors also identify relevant API(s)
and API caveats as the ground-truth answer to the question,
based on the upvoted answers to the corresponding Stack
Overflow questions and the relevant API documentation. The
two authors have to discuss and come to an agreement for the
answers. Table @ lists the formulated questions, the relevant
API(s) for each question, and the number of API caveats in
the ground-truth answer to each questior['}

"The ground-truth answers can be found at https:/github.com/
Text2KnowledgeGraph/data/blob/master/Ten%20Questions.pdf]

TABLE VII
PERFORMANCE OF CONTROL GROUP VERSUS EXPERIMENTAL GROUP

Participants ~ AveQCT(second) AveCP(%)
Pl 170.8 55.83
P2 1323 32.5
Control P3 143.9 37.5
G‘r’o N P4 63.4 15.83
up P5 214.4 49.83
P6 129.2 54.16
Avestddev 142.33450.02 40.94415.42
P7 94.3 57.5
P8 70.9 54.16
Experimental P2 89 73.33
Grge enta P10 76.2 65.82
up P11 124.6 65
P12 61.8 61.66
Avestddev 86.13422.26 62.91+6.76

AveQCT: Average Question-Completion-Time
AveCP: Average Correct Percentage

Farticipants: We recruit 12 third- and fourth-year under-
graduate students from our school. These students have the
similar course-taking history and academic records. None of
them have Android development experience. We randomly
split these 12 students into two groups: a control group and an
experimental group. Each group has 6 students. The control
group uses Google search engine to search for API caveats on
the Android Developers website. The experimental group uses
our proof-of-concept search tool to search for API caveats in
the Android API caveats knowledge graph we construct.

Experiment Procedure: We develop a simple application for
the participants to read the experiment questions and enter
their answers. The application displays one question at a time
and it records the time when a participant starts a question
and the time when he/she submits the answer. Each question
is given up-to 5 minutes. The application will automatically
save the answer and move to the next question when the time
is up. After each question, the application asks the participants
to rate the difficulty of the question and their confidence in the
submitted answer using the 5-point Likert scale. We conduct
post-experiment interviews with the participants to understand
the reasons of their ratings.

Data analysis: After the experiments, we compile the
question-completion-time statistics and the question-difficulty
and answer-confidence ratings of the two groups. The two
authors mark the correct API caveats in the submitted answers
against the ground-truth answers. We use Wilcoxon Rank
Sum Test [46] to measure whether the difference of question-
completion-time statistics and the difference of correct-API-
caveats percentages between the control and experiment group
is statistically significant at p-value < 0.05.

Results: Table shows the average question-completion
time (AveQCT) and the average correct-API-caveats percent-
age (AveCP) of each participant in the two groups. Overall, the
participants of the experimental group complete the questions
faster than those of the control group (86.13+22.26 seconds
versus 142.33+50.02 seconds), and the API caveats that the
experimental group finds are more accurate than those found

https://github.com/Text2KnowledgeGraph/data/blob/master/Ten%20Questions.pdf
https://github.com/Text2KnowledgeGraph/data/blob/master/Ten%20Questions.pdf
https://developer.android.com/index.html

by the control group (62.91£6.76% versus 40.94+15.42%).
The Wilcoxon Rank Sum Test shows that both the differ-
ence between question-completion time and the difference of
correct-API-caveats percentage between the two groups are
statistically significant at p-value < 0.05.

Fig. [3] compares the question-difficulty ratings and the
answer-confidence ratings of the two groups. The ratings
results are rather surprising to us. We expect that the exper-
imental group would rate the question-difficulty lower than
the control group and rate the answer-confidence higher than
the control group. However, the actual ratings are opposite
to our expectation. The ratings results also contradict to the
performance results of the two groups. That is, although
the control group has lower question-difficulty ratings and
higher answer-confidence ratings than the experimental group,
the objective question-completion-time and the correct-API-
caveats percentage of the control group are both worse than
the performance of the experimental group.

We interview the participants about this contradiction be-
tween the objective performance results and the subject rat-
ings. We find that the control group participants have to read
long documents to find the API caveats. As the time is limited,
they usually use the most seemingly correct information they
have read as the answer. Within the limited information they
have read, they thought that they found the right API caveat
easily. Therefore, they tend to rate the question-difficulty lower
and the answer-confidence higher. Unfortunately, they do not
realize that the questions are not as easy as they thought and
they actually miss other important API caveats.

In contrast, the experimental group participants directly see
a list of highly relevant API caveats. On the one hand, this
helps them include more relevant API caveats in their answers
in a shorter time. On the other hand, this leaves them many
seemingly relevant API caveats to compare and judge. As a
result, they tend to rate the question more difficult and their
confidence in answers lower.

The objective performance results and the “surprising”
subject ratings reveal the accessibility issue of API caveats in
API documentation which could create an illusion of already
knowing the right API usage. As our knowledge graph makes
the API caveats more easily accessible, bewaring of the API
caveats would make the developers realize that using an
API properly may not be as easy as it looks. This improved
awareness of API caveats could make the developers more
cautious when using an API, and thus potentially avoiding
some mistakes in the first place.

E. Threats to Validity

A threat to internal validity is the annotation errors when ex-
amining the output of the knowledge graph construction steps.
To decrease human errors, we have two annotators annotate the
data independently, and their annotation results have an almost
perfect agreement. Another internal threat is the equivalence
of the control and experimental group. To mitigate this threat,
we recruit the students with the similar course-taking history
and academic records. Furthermore, student participants may

"
o

Boe
°

25
14
2 20
15
I I m I I
5 I

Very Easy Easy Moderate Hard Very Hard Lowest Highest

o N & o ®

® control Group ™ Experimental Group

(a) Question Difficulty (b) Answer Confidence

Fig. 3. Question-Difficulty Ratings and Answer-Confidence Ratings

lack practical programming experiences which may limit the
generalization of our results to professional developers. The
major threat to external validity is the generalization of our
results. Our proof-of-concept tool involves only Android API
documentation and our user study is small scale. In the future,
we will reduce this threat by applying our approach to more
API documentation and release our knowledge graph and tool
for public evaluation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we first show that API caveats in API doc-
umentation have often been overlooked which consequently
cause unexpected program errors that affect millions of de-
velopers. To tackle this API-caveats accessibility issue, we
present an NLP approach to extract API entities, declared
relations between APIs and API caveat sentences from API
documentation, and organize the extract API information into
an API caveats knowledge graph. Different from traditional
document search, this knowledge graph enables an entity-
centric paradigm for searching API caveats in a more struc-
tured way. We validate our approach by constructing a large
Android API caveats knowledge graph. The core mining steps
of our approach demonstrate the high accuracies in extracting
and linking API caveat sentences. A small-scale user study
provides the initial evidence that API caveats knowledge graph
can make API caveats more easily accessible and potentially
improve the awareness of API caveats. In the future, we will
investigate more flexible caveat sentence extraction methods
and improve the accuracy of co-reference resolution. We will
extend our approach to API documentation with different
document characteristics, for example, using different markup
styles or adopting different caveat description.

ACKNOWLEDGMENT

Hongwei Li gratefully acknowledge financial support by
China Scholarship Council, Jiangxi Provincial Department of
Education Science and Technology Research Project under
Grant No.GJJ160278, and National Natural Science Founda-
tion of China under Grant No.61562042.

REFERENCES

[11 W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264-1282, 2013.

[2] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? an empirical study on the directives of api
documentation,” Empirical Software Engineering, vol. 17, no. 6, pp.
703-737, 2012.

[3] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE Software, vol. 26, no. 6, pp. 27-34, 2009.

[4]
[5]
[6]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 6875, 2015.

B. A. Myers and J. Stylos, “Improving api usability,” Communications
of the ACM, vol. 59, no. 6, pp. 62-69, 2016.

D. Ko, K. Ma, S. Park, S. Kim, D. Kim, and Y. Le Traon, “Api document
quality for resolving deprecated apis,” in Proceedings of the 21st Asia-
Pacific Software Engineering Conference, vol. 2. 1EEE, 2014, pp. 27—
30.

M. P. Robillard and R. Deline, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703-732, 2011.

S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 643-652.

M. P. Robillard and Y. B. Chhetri, “Recommending reference api
documentation,” Empirical Software Engineering, vol. 20, no. 6, pp.
1558-1586, 2015.

B. Dagenais and M. P. Robillard, “Recovering traceability links between
an api and its learning resources,” in Proceedings of the 34th Interna-
tional Conference on Software Engineering. 1EEE, 2012, pp. 47-57.
P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 35th International
Conference on Software Engineeringon. IEEE, 2013, pp. 832-841.
X. Chen and J. Grundy, “Improving automated documentation to code
traceability by combining retrieval techniques,” in Proceedings of the
26th International Conference on Automated Software Engineering.
IEEE Computer Society, 2011, pp. 223-232.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 404-415.

H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in Proceedings of the 20th Working Conference on
Reverse Engineering. 1EEE, 2013, pp. 142-151.

P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279-290.

M. L. Collard, M. J. Decker, and J. 1. Maletic, “srcml: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool
demonstration,” in Proceedings of the 29th International Conference on
Software Maintenance. 1EEE, 2013, pp. 516-519.

C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced
fagqs into api documentation,” in Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
456-459.

E. C. Campos, L. B. Souza, and M. d. A. Maia, “Searching crowd
knowledge to recommend solutions for api usage tasks,” Journal of
Software: Evolution and Process, vol. 28, no. 10, pp. 863-892, 2016.
H. Jiang, J. Zhang, Z. Ren, and T. Zhang, “An unsupervised approach
for discovering relevant tutorial fragments for apis,” in Proceedings of
the 39th International Conference on Software Engineering. ACM,
2017, pp. 38-48.

L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, M. Hasan,
B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t watch!: extracting
relevant fragments from software development video tutorials,” in Pro-
ceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 261-272.

S. Bradner, “Key words for use in rfcs to indicate requirement
levels,” Harvard University, Tech. Rep., 1997. [Online]. Available:
https://tools.ietf.org/html/rfc2119

M. Bruch, M. Mezini, and M. Monperrus, “Mining subclassing directives
to improve framework reuse,” in Proceedings of the 7th Working
Conference on Mining Software Repositories. 1EEE, 2010, pp. 141-150.
U. Dekel and J. D. Herbsleb, “Improving api documentation usability
with knowledge pushing,” in Proceedings of the 3lst International
Conference on Software Engineering. 1EEE, 2009, pp. 320-330.

B. Bokowski, J. Arthorne, and J. des Rivires, “Designing eclipse apis,”
in Tutorial at the EclipseCon conference, 2006.

B. Bokowsk, “Java api design,” in Tutorial at the EclipseCon conference,
2008.

C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-
Closky, “The stanford corenlp natural language processing toolkit,” in
Proceedings of 52nd annual meeting of the association for computa-
tional linguistics: system demonstrations, 2014, pp. 55-60.

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

M. Recasens, M.-C. de Marneffe, and C. Potts, “The life and death of
discourse entities: Identifying singleton mentions,” in Proceedings of the
2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2013, pp.
627-633.

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and
D. Jurafsky, “Stanford’s multi-pass sieve coreference resolution system
at the conll-2011 shared task,” in Proceedings of the 15th conference
on computational natural language learning: Shared task. Association
for Computational Linguistics, 2011, pp. 28-34.

K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu,
D. Jurafsky, and C. Manning, “A multi-pass sieve for coreference
resolution,” in Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational
Linguistics, 2010, pp. 492-501.

C. Scaffidi, “Why are apis difficult to learn and use?” Crossroads,
vol. 12, no. 4, pp. 44, 8 2006.

Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive defects,”
in Proceedings of the 39th International Conference on Software Engi-
neering. 1EEE Press, 2017, pp. 27-37.

H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning for rec-
ommending code snippets,” IEEE Transactions on Services Computing,
vol. -, no. -, pp. 1-1, Doi:10.1109/TSC.2016.2592909 2016.

B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social
q&a sites are changing knowledge sharing in open source software
communities,” in Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM, 2014, pp. 342—
354.

R. Suzuki, “Interactive and collaborative source code annotation,”
in Proceedings of the 37th International Conference on Software
Engineering-Volume 2. 1EEE Press, 2015, pp. 799-800.

M. Squire, “’should we move to stack overflow?” measuring the utility
of social media for developer support,” in Proceedings of the 37th
International Conference on Software Engineering, vol. 2. 1EEE, 2015,
pp. 219-228.

R. Abdalkareem, E. Shihab, and J. Rilling, “What do developers use the
crowd for? a study using stack overflow,” IEEE Software, vol. 34, no. 2,
pp. 53-60, 2017.

A. Bacchelli, M. Lanza, and V. Humpa, “Towards integrating e-mail
communication in the ide,” in Proceedings of 2010 Workshop on
Search-driven Development: Users, Infrastructure, Tools and Evalua-
tion. ACM, 2010, pp. 1-4.

A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Proceedings
of the 16th Working Conference on Reverse Engineering. 1EEE, 2009,
pp. 205-214.

D. Ye, L. Bao, Z. Xing, and S.-W. Lin, “Apireal: an api recognition
and linking approach for online developer forums,” Empirical Software
Engineering, pp. 1-32, 2018.

C. Treude, M. Sicard, M. Klocke, and M. Robillard, “Tasknav: Task-
based navigation of software documentation,” in Proceedings of the 37th
International Conference on Software Engineering, vol. 2. 1EEE, 2015,
pp. 649-652.

D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre, “Learning to extract api
mentions from informal natural language discussions,” in Proceedings
of the 32nd International Conference on Software Maintenance and
Evolution. 1EEE, 2016, pp. 389-399.

C. X. Chu, N. Tandon, and G. Weikum, “Distilling task knowledge
from how-to communities,” in Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 805-814.

G. A. Bartelt, R. E. Rolley, and L. E. Vine, “Evaluation of abundance
indices for striped skunks, common raccoons and virginia opossums in
southern wisconsin,” Tech. Rep., 2001.

R. Singh and N. S. Mangat, Elements of Survey Sampling. Dordrecht
; Boston: Kluwer Academic Publishers, 01 1996, vol. 15.

J. R. Landis and G. G. Koch, “An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple
observers,” Biometrics, pp. 363-374, 1977.

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80-83, 1945.

https://tools.ietf.org/html/rfc2119
https://www.researchgate.net/publication/328906280

	Introduction
	Formative Study
	Related Work
	The Approach
	Input and Preprocessing
	Building API Skeleton Graph
	Extracting API Caveat Sentences
	Explicit API Caveats
	Restricted API Caveats
	Generic API Caveats

	Building API Caveats Knowledge Graph
	Co-reference Resolution
	Linking API Caveat Sentences to API Entities

	Searching for API Caveats in the Knowledge Graph

	Proof-of-Concept Implementation
	Evaluation
	Android API Caveats Knowledge Graph
	The Abundance of API Caveats (RQ1)
	The Quality of API Caveats Knowledge Graph (RQ2)
	Accuracy of Extracting API Caveat Sentences
	Accuracy of Co-reference Resolution
	Accuracy of Caveat-Sentence-API Linking

	The Improvement of API Caveats Accessibility (RQ3)
	Threats to Validity

	Conclusions and Future Work
	References

