Learning-Based Extraction of First-Order Logic Representations
of API Directives

Mingwei Liu* Xin Peng" " Andrian Marcus
Fudan University Fudan University The University of Texas at Dallas
China China USA
Christoph Treude Xuefang Bai* Gang Lyu”
The University of Adelaide Fudan University Fudan University
Australia China China
Jiazhan Xie* Xiaoxin Zhang'
Fudan University Fudan University
China China
ABSTRACT KEYWORDS

Developers often rely on API documentation to learn API directives,
i.e,, constraints and guidelines related to API usage. Failing to follow
API directives may cause defects or improper implementations.
Since there are no industry-wide standards on how to document API
directives, they take many forms and are often hard to understand
by developers or challenging to parse with tools.

In this paper, we propose a learning based approach for extract-
ing first-order logic representations of API directives (FOL directives
for short). The approach, called LEADFOL, uses a joint learning
method to extract atomic formulas by identifying the predicates
and arguments involved in directive sentences, and recognizes the
logical relations between atomic formulas, by parsing the sentence
structures. It then parses the arguments and uses a learning based
method to link API references to their corresponding API elements.
Finally, it groups the formulas of the same class or method together
and transforms them into conjunctive normal form. Our evaluation
shows that LEADFOL can accurately extract more FOL directives
than a state-of-the-art approach and that the extracted FOL direc-
tives are useful in supporting code reviews.

CCS CONCEPTS

« Software and its engineering — Documentation; Maintain-
ing software; Software libraries and repositories.

“M. Liu, X. Peng, X. Bai, G. Lyu,]. Xie and X. Zhang are with the School of Computer
Science and Shanghai Key Laboratory of Data Science, Fudan University, and the
Shanghai Institute of Intelligent Electronics & Systems, China.

X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468618

491

Directive, First Order Logic, API Documentation

ACM Reference Format:

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai,
Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang. 2021. Learning-Based Extraction
of First-Order Logic Representations of API Directives. In Proceedings of the
29th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 21), August 23-28,
2021, Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3468264.3468618

1 INTRODUCTION

Many software development tasks need to be accomplished by
reusing Application Programming Interfaces (APIs) provided by
libraries or frameworks. During this process, developers often rely
on API documentation to identify relevant APIs and learn API
usages [5, 7, 21]. API documentation provides a variety of different
types of information such as, functionality descriptions, directives,
purpose and concept explanations [9]. Among them, directives are
especially important for the correct usage of APIs. API directives
make developers aware of constraints and guidelines related to the
usage of an API [13]. Failing to follow API directives may lead to
defects or improper implementations.

Although well-maintained API documentation exists, it is often
not easy for developers to effectively access relevant knowledge on
how to use an API [5, 7, 8]. This problem is evidenced by the fact
that API misuses are common and developers often ask API related
questions in online forums such as, Stack Overflow. To improve the
accessibility of API directives, existing research [5, 7, 8] extracts
directive sentences from API documentation. The extracted API
directives can be recommended to developers in an on-demand way
or a push way for the APIs used in code.

To further support automated tasks such as, the detection of API
misuses [24] and documentation defects [32], the API directives
need to be transformed into a machine-processable form. For this
purpose, researchers have proposed approaches for extracting differ-
ent kinds of formally expressed API directives from documentation,
e.g., resource specifications [31], temporal and constraints [17], pa-
rameter constraints [25] and call-order/condition-checking [20].
Recently, Zhou et al. [32] proposed an approach called DRONE

https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3468264.3468618

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

that extracts API directives represented in first-order logic (FOL)
formulas. These approaches rely on recurrent linguistic patterns to
extract formal expressions of API directives and, thus, are able to
extract only certain types of directive types, with limited accuracy.

API directives in natural language can be expressed in many
different forms, with complex logical structure. Hence it is chal-
lenging to recognize API directives and parse them into formal
representations such as FOL formulas. First, an API directive may
involve complex logical structures consisting of multiple clauses.
For example, the return value directive for javax.swing.UIDefaults.
getIcon(Object) is “if the value for key is an Icon, return the Icon
object; otherwise return null”. For understanding this directive,
it is necessary to recognize the clauses and their logical relations
implied by the connectors (e.g., if; otherwise, and, or). Second, the
predicate of a clause can be expressed in many different ways. For
example, instead of stating that a parameter is non-negative, a
directive may state that passing a negative parameter is not al-
lowed; instead of explicitly requesting that a value is an instance
of javax.swing.Icon, a directive may simply state that the value
is an Icon. Third, the arguments of a clause may involve API el-
ements that are mentioned with different kinds of pronouns or
aliases. For example, a parameter named “obj” may be mentioned
as “the second parameter” or “the object”; and the return value of
java.lang.StringBuffer.length() can be mentioned as “the length
of the sequence”. For understanding such API directives, it is neces-
sary to employ complex linguistic anaphora resolution techniques.

In this paper, we aim to automatically identify API directives
and transform them into FOL formulas in conjunctive normal form,
which consist of atomic formulas and logical operators (i.e., conjunc-
tion, disjunction, implication). The types of atomic formulas and
their forms in natural language expressions of API directives are
essential for the extraction of FOL representations of API directives.
To investigate the types and forms of atomic formulas, we studied
729 directive sentences sampled from the reference documentation
of JDK 1.8. The study resulted in 24 predicates that can be used in
the atomic formulas of API directives, together with several types
of arguments involved in the formulas.

Based on these findings, we propose a learning based approach
for extracting first-order logic representations of API directives
(FOL directives for short) from documentation, which we call LEAD-
FOL (Learning based Extraction of API Directives in FOL). Given
API documentation (e.g., reference documentation or tutorial), LEAD-
FOL extracts description sentences and trains a sentence classifier
to identify directive sentences. To extract atomic formulas from
clauses, it uses a joint learning method, which trains a sequence
tagging model to identify the predicates and arguments involved
in the clauses. It recognizes the logical relations between atomic
formulas by parsing the structures of the corresponding directive
sentences. Then, it also recognizes the constants, expressions, and
API elements involved in the arguments. Specifically, it uses a learn-
ing based method to link API references to the corresponding API
elements. Finally, it groups the formulas of the same class or method
together and transforms them into conjunctive normal form.

We empirically evaluated the effectiveness and usefulness of
LEaDFOL. First, we intrinsically evaluated the key steps of LEAD-
FOL independently, i.e., directive sentence identification, atomic

492

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang

formula extraction, logical relation recognition, and argument pars-
ing. Then, we evaluated the accuracy of the extracted FOL directives
by comparing them with the results of DRONE [32]. We also eval-
uate the applicability of LEADFOL on APIs from other libraries.
Finally, we evaluate the usefulness of the FOL directives extracted
by LEADFOL, in supporting developers during code reviews. The
results show that LEADFOL accurately extracts more FOL directives
than DRONE [32] and the extracted FOL directives are useful in
supporting code reviews.

2 PREDICATE IDENTIFICATION

We investigate different types atomic formulas involved in API
directives and how they are expressed in API documentation. To
this end, we sampled a set of directive sentences from the reference
documentation of JDK 1.8 and conducted a qualitative analysis,
using open coding.

2.1 Data Preparation

As in previous studies [13, 32], we obtained the API documentation
from the source code of the target API library by extracting the
comments before class, interface, and method declarations. Then,
we extracted the following five types of text for further analysis:

o Class Description: leading text of class comments that appears
before annotations (e.g., “@author”).

o Method Description: leading text of method comments that
appears before annotations (e.g., “@param”).

e Exception Description: text in exception annotations (i.e.,
“@throws”, “@exception”).

e Parameter Description: text in parameter annotations (i.e.,
“@param”).

o Return Value Description: text in return value annotations
(i.e., “@returns”).

We cleaned the extracted comments by removing delimiters
(e.g., /™7, “*/”), HTML tags (e.g., “<tt></tt>"), and annotations (e.g.,
“{@link}”). Then, we split the text into sentences using the Spacy
NLP library.?

For identifying candidate directive sentences we used a set of
directive related keywords. Monperrus et al. [13] report a set of
keywords and regular expressions that are likely to reveal direc-
tives. Zhou et al. [32] define 64 linguistic patterns for parameter
constraints (e.g., “[Parameter] can not be null”), based on which we
extracted a set of directive related keywords. We merged the two
sets and obtain 86 keywords and regular expressions (e.g., “must”,
“only”, “note”) for identifying candidate directive sentences. The
complete set can be found in our replication package [2].

Then, we sampled a set of candidate sentences that include one of
the keywords or conform to one of the regular expressions based on
two criteria: (1) sample at least 200 sentences from each of the five
types of text; and (2) sample at least 5 sentences for each keyword or
regular expression. The sampling resulted in 1,167 sentences, after
removing duplicate ones. Two of the authors independently exam-
ined the sampled sentences to annotate whether they express API
directives or not. They achieved a Cohen’s Kappa agreement [10]

!https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-
downloads.html
Zhttps://spacy.io/

Learning-Based Extraction of First-Order Logic Representations of APl Directives

of 0.807, i.e., almost perfect agreement. For the sentences that were
annotated differently, a third author served as arbiter and made the
final decision. Finally, we obtained 729 directive sentences, which
we analyzed further.

2.2 Coding Protocol

The coding was done in two phases: seed coding phase and sentence
annotation phase. The purpose of the seed coding phase is defining
a set of initial predicates to facilitate the subsequent sentence anno-
tation. The purpose of the sentence annotation phase is identifying
the implicit atomic formulas from the sampled directive sentences.

During the seed coding phase, we identified the following 13
predicates from the 64 linguistic patterns reported in [32]: Equal,
NotEqual, MayBe, Greater, Less, GreaterOrEqual, LessOrEqual, Nega-
tive, Positive, NonNegative, NonPositive, InstanceOf, NotInstanceOf.
The descriptions of these predicates can be found in Table 1.

In the sentence annotation phase, two of the authors indepen-
dently annotated the atomic formulas in the 729 directive sentences.
For each sentence the annotators understood its meaning, based
on its context in the documentation, and identified the implicit
formulas based on the currently defined predicates. They split some
sentences into one or multiple clauses that can be transformed
into atomic formulas and identified the predicate implied and the
arguments involved in each clause.

If the identified formulas are different, a third author joined
and started a discussion to reach an agreement. To avoid different
interpretations of the same clause, we defined the following two
guidelines for the annotation:

(1) Infer the missing arguments based on the context, e.g., in the
if clause “If null, this method throws an exception”;

(2) If possible use a single predicate rather than multiple ones,
e.g., use GreaterOrEqual instead of Greater and Equal.

If the identified formula involves an undefined predicate, the
three authors discussed whether to accept it as a new predicate,
based on the following two criteria:

(1) Only define predicates that are commonly used by different
APIs. For example, we will not define a predicate Sorted for
the clause “The indices must be in sorted order, from lowest
to highest”, as “sorted” is not common.

(2) Only define predicates that have clear evaluation criteria.
For example, we will not define a predicate NotValid for the
clause “if the index is not valid”, as it is vague.

Whenever a new predicate was identified, the annotators checked
whether the annotations that have been made needed updating to
align with the new predicate definitions. Note that not all 729 di-
rective sentences were captured using atomic formulas.

2.3 Results

The sentence annotation phase resulted in 11 new predicates. These
predicates together with the 13 predicates identified in the seed
coding phase constitute the predicates that are used to express the
atomic formulas of API directives. Table 1 shows the 24 predicates
together with their definitions and examples. The text in italics in
the examples indicates the arguments involved in the predicates.

493

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

These predicates can be classified into four categories: value
(16), type (2), action (2), and usage (4). Value predicates specify the
range of a given value (e.g., parameter, return value). Type predi-
cates specify whether an object is the instance of a class/interface.
Action predicates specify the actions (e.g., throw exception) that
a method may take in a certain situation. Usage predicates spec-
ify how a class or method should be used, including the methods
that need to be overridden, deprecated classes, replaced methods,
and equivalent methods. Compared with the formulas defined in
prior related research [32], the formulas identified in our study
include additional action and usage predicates and more value pred-
icates (i.e.,, MayNotBe, MayNegative, MayPositive, MayNonnegative,
MayNonpositive). The MayXXX predicates indicate something that
may occur and should be considered in API usage. e.g., “Nullable”
can be regarded as a specialization of MayBe.

From the annotated atomic formulas, we identified the following
types of arguments:

o Literal Constant: constants of different types (e.g., number,
string, boolean), including the special value “null”;

o API Elements: API classes/interfaces (including exception
and error classes), their properties and methods, and the
parameters and return values of their methods;

e Mathematical Expressions: mathematical expressions com-
posed by the above elements, operators (e.g., “+”, “-”), and
mathematical functions (e.g., log).

Note that some predicates are opposite or can be expressed by
other predicates. For example, NotEqual is the negation of Equal;
and Negative can be expressed using Less. We reserve these equiva-
lent predicates to facilitate the recognition of atomic formulas from
directive sentences, as their expressions in natural language are
quite different.

3 APPROACH

Given an API library and its documentation, LEADFOL extracts FOL
directives for API classes/interfaces and methods as follows:

¢ Directive Sentence Identification: Extract description sen-
tences from API documentation and identify directive sen-
tences from them.

¢ Atomic Formula Extraction: Extract atomic formulas from
each directive sentence by recognizing the predicates and
arguments.

e Logical Relation Recognition: Recognize the logical rela-
tions between the extracted atomic formulas by parsing the
structure of the corresponding directive sentence.

e Argument Parsing: Parse the arguments in the extracted
atomic formulas to recognize the involved constants, expres-
sions, and API elements.

e Formula Normalization: Group the formulas of the same
API class/interface or method together and transform them
into conjunctive normal form.

The following subsections detail these steps. We use the JDK
method StringBuffer.insert(int, char)® asa running example
throughout the section to illustrate the approach.

3https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuffer.html

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 1: Predicates for FOL Expressions of API Directives

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang

Category | Predicate Definition Example Predicate Definition Example
Equal(v;, v2) U == Uy If the obj is null... NotEqual(vy, v2) U1 F U The param will never be null.
MayBe(0, v) 0 may be v The applet may be null. MayNotBe(o, v) 0 may not be v It may not be null.
Greater(v1, 02) v > U The length is greater than 0. Less(v1, v2) v < Uy 1f size is less than 0...
GreaterOrEqual(vy, v2) [the starting offset >= 0 LessOrEqual(vy, v2) v < v 1f init is illegal (<=0)...
Negative(v) 0<0 1f this value is negative... Positive(v) 0> 0 The number must be positive.
Value Calling seek with a negative index
MayNegative(v) v may be negative is lega% 8 MayPositive(v) © may be positive The value may be positive.
Nonnegative(v) v>=0 Passing negative parameter is not Nonpositive(v) <=0 If m is not positive...
recommended.
' s s The returned number may be a) e) e A non-positive parameter is al-
MayNonnegative(v) v may be nonnegative non-negative decimal value. MayNonpositive(v) v may be nonpositive lowed.
Type InstanceOf(i, t) i is an instance of ¢ If this node is of type Document... NotInstanceOf(i, ¢) ;15 not an instance of Irflits};?aiermzssxon is not a BasicPer-
Action Throw(m, e) m throws an- excep- Th.u method .w1ll throw @ Null- Return(m, v) m returns v This method always returns true.
tion e PointerException...
NeedOverride(rm) m néeds tobe overrid- | This method nleeds to be overrid- Deprecated(c) c is deprecated This class is deprecated.
den in subclasses den by extending classes.
Usage This is a replacement for . mj and my are equiv- | This method is equivalent to ofE-
Replace(n, 0) n replaces 0 sun.awt. AppContext. Equivalent(m; , my) alent pochDay(long).

3.1 Directive Sentence Extraction

Similar to the data preparation in the predicate identification study
(see Section 2.1), this step extracts five types of text from the API doc-
umentation (i.e., class descriptions, method descriptions, exception
descriptions, parameter descriptions, and return value descriptions),
cleans the text and splits the text into sentences. Then, we complete
the obtained sentences and identify directive sentences from them.

The purpose of sentence completion is to facilitate subsequent
analysis. To this end, we use Spacy to analyze the sentences by tok-
enization, POS (part-of-speech) tagging, and dependency parsing,
and complete the sentences accordingly.

e If a sentence has no subject, then we add a subject accord-
ing to the sentence type: “This class” for class description;
“This exception” for exception description; “This parameter”
for parameter description; and “This method” for method
description and return value description.

o Ifasentence has no predicate, then we add a predicate accord-
ing to the sentence type: “throws” for exception description,
“returns” for return value description, and “is” for the others.

o Ifasentence is an exception description and only has a condi-
tional clause, then we add “This method throws an exception”
as the main clause.

Similar to Liu et al. [8], we train a sentence classifier to identify
directive sentences. We use FastText? to train a binary classifier
using the following training data obtained from three sources: 1,167
sentences annotated in our predicate identification study (see Sec-
tion 2.1); 8,347 sentences annotated by Liu et al. [8]; 6,778 sentences
randomly selected from the JDK 1.8 reference documentation and
annotated by four of the authors. As a result, the training set in-
cludes 8,314 directive sentences and 7,978 non-directive sentences.

Running example. For StringBuffer.insert(int, char), LEAD-
FOL extracts the following two directive sentences:

DS1: The offset argument must be greater than or equal to 0, and
less than or equal to the length of this sequence.

DS2: This method throws an exception if the offset is invalid.

DS1 is extracted from the method description; DS2 is extracted
from the exception description and obtained after completing the
original sentence “if the offset is invalid”

“https:/github.com/facebookresearch/fastText

494

3.2 Atomic Formula Extraction

As discussed in Section 1, the predicates and arguments are ex-
pressed in many different forms in directive sentences, e.g., “the
index must be greater than or equal to 0”, “index >=0", or “index
< 0 is illegal”. It is thus hard to recognize the predicates and ar-
guments using linguistic patterns. Therefore, we design a joint
learning method for extracting atomic formulas by recognizing the
predicates and their arguments in a directive sentence. An intuitive
method for this problem is to treat predicate recognition and ar-
gument recognition as two subtasks and design an independent
model for each of them. However, this method would neglect the
relevance between the two subtasks since the results of one subtask
may affect the performance of the other one [30]. In contrast, joint
learning methods use a single model to handle multiple relevant
subtasks to effectively integrate the information of these subtasks.
They have been shown to achieve better results in NLP tasks such
as joint extraction of entities and relations [30].

We train a sequence tagging model to implement joint learning
for predicate and argument recognition. Sequence tagging [18]
predicts the corresponding tag sequence of an observation sequence
and is widely used for NLP tasks such as POS tagging, chunking,
and named entity recognition (NER). The idea is that each argument
of a predicate can be treated as a special entity and the predicate
can be regarded as a relation of related entities, thus the recognition
of the predicate can be done by recognizing all the involved entities.
For example, the predicate Throw can be identified if a method
entity and a thrown exception entity are recognized in a sentence.

3.2.1 Tagging Schema. To use sequence tagging for our purpose,
we need to design a tagging scheme that can represent the involved
arguments of the predicates defined in Table 1. Our tagging scheme
is based on the widely used IOBES scheme [18]: “B” (“Beginning”),
“I” (“Inside”), and “E” (“End”) respectively indicate the beginning,
middle, and end of an entity; “S” (“Single”) indicates that the current
word itself constitutes an entity; and “O” (“Outside”) indicates a
normal word. For each argument of a predicate, we define a named
entity type and four tags (i.e., “B”, “I”, “E”, and “S”). For example, for
the predicate Throw we define two entity types Throw-1and Throw-
2 for the method and thrown exception respectively and four tags
for each entity type (e.g., “Throw-1-B”, “Throw-1-I", “Throw-1-E”,
“Throw-1-S”). To support predicates expressed in passive voice we

Learning-Based Extraction of First-Order Logic Representations of APl Directives

include an additional passive form for Throw, Return, and Replace
in sequence tagging: ThrownBy(e, m), ReturnedBy(v, m), and Re-
placedBy(o, n). As a result, we define 46 types of named entities for
the 24 predicates and 184 tags for the entity types together with
a special tag “O” (“Outside”). The definitions of these entity types
and tags can be found in our replication package [2].

Based on the tagging schema, we provide the following guide-
lines for sentence annotation:

e cach word has exactly one tag;

o the ranges (i.e, between the beginning and the end) of two
argument do not overlap;

o the tags of different arguments of the same predicate occur in
the same order as they occur in the definition of the predicate
in Table 1; and

e an argument should be annotated as complete as possible
(e.g., “The offset argument” instead of “offset”).

It is possible that multiple clauses share the same argument. For
example, the GreaterOrEqual clause and the LessOrEqual clause of
DS1 share the argument “The offset argument”. In this case we an-
notate the shared argument according to the predicate that appears
first in the sentence. For example, we annotate the argument “the
offset argument” in DS1 according to the GreaterOrEqual predi-
cate. We will resolve the shared argument for the other involved
predicates later, when we generate the atomic formulas.

Running example. The annotations for DS1 and DS2 are given
below (GE, LE, TH are the abbreviations of GreaterOrEqual, LessOrE-
qual, Throw, respectively), which provide a tag for each word. DS1
includes three arguments of two predicates with one shared argu-
ment, while DS2 includes two arguments of one predicate.

DS1: GE-1-B: The GE-1-I: offset GE-1-E: argument O: must O: be
O: greater O: than O: or O: equal O: to GE-2-S: 0, O: and O: less O:
than O: or O: equal O: to LE-2-B: the LE-2-I length LE-2-I: of LE-2-I:
this LE-2-E: sequence.

DS2: TH-1-B: This TH-1-E: method O: throws TH-2-B: an TH-2-E:
exception O: if O: the O: offset O: is O: invalid.

3.2.2 Learning Model. We use an open source implementation
of BERT-BIiLSTM-CREF, called Kashgari®, a deep learning based se-
quence tagging model, to predict the tags of the words of a sentence.
Taking a sentence (a sequence of words) as input, the model predicts
for each word a tag from a predefined set. The model includes there
layers: BERT layer, Bi-LSTM layer, and CRF layer. The BERT (Bidi-
rectional Encoder Representations from Transformers) layer is an
embedding layer that converts each input word to a fixed-size vector
using the pretrained language model [4]. BERT is pretrained on a
large corpus and its vector representation can capture the semantics
of a word in different contexts well. The Bi-LSTM (Bi-directional
Long Short-Term Memory) layer further encodes and combines the
vector of a word together with its left context and right context to
prepare the input for the CRF layer. The CRF (Conditional Random
Field) layer produces a tag for each word. It considers the correla-
tions between the tags of neighboring words and jointly decodes
the best chain of tags for a given input sentence, thus is suitable
for the sequence tagging task.

Shttps://github.com/BrikerMan/Kashgari

495

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

3.2.3 Training. To prepare training data for the model, we asked
four Master students to annotate the sampled directive sentences
from the training set of the directive sentence classifier. The anno-
tation was done with the online annotation tool doccano [14]. We
conducted a two-hour training session to help the four annotators
learn the annotation tool, tagging schema, and annotation guide-
lines. Each directive sentence was annotated by two annotators,
independently. If their annotations were different, one of the au-
thors joined and resolved the conflict using the majority strategy.
As a result, we obtained 3,226 annotated directive sentences with
7,045 arguments. For 78.2% of the 3,226 directive sentences, the
annotations of two people was identical, i.e., high consensus.

We followed a commonly used data augmentation technique in
computer vision [6] and natural language processing [28], which
can help train more robust models, particularly when using smaller
data sets. Based on the annotated sentences, we used a set of heuris-
tic rules to generate more training data, including:

e replace an argument in a sentence with an argument of the
same type (e.g., value, method, class) randomly selected from
other sentences;

e exchange two arguments of the same predicate if they have
the same type; and

e replace an argument reference with an automatically gener-
ated alias (e.g., “StringBuilder” is replaced by “this class” or
“string builder”).

These rules are designed based on our observations of the annotated
sentences, by considering the syntactic structures of the sentences
and the characteristics of the predicates. The generated data in-
creases the diversity of the training data and at the same time
conforms to the human annotations.

Finally, we obtained 11,019 annotated directive sentences with
16,972 annotated arguments as the training data.

3.24 Atomic Formula Generation. Given a directive sentence, the
trained sequence tagging model predicts a tag for each word. Then,
we can generate atomic formulas based on the tagging. If all ar-
guments of a predicate are successively found in the tagging, we
generate an atomic formula with the predicate and the recognized
arguments. Due to the existence of shared arguments, it is possible
that a predicate only has its second argument found. In this case,
we try to find the closest first argument of other predicates before
the current predicate and combine the argument with the second
argument of the current predicate to generate an atomic formula.

Running example. With the above strategy, we extract the fol-
lowing three atomic formulas for StringBuffer.insert(int, char):

GreaterOrEqual(“the offset argument”, “0”),

LessOrEqual(“the offset argument”, “the length of this sequence”),

2«

Throw(“this method”, “an exception”).

3.3 Logical Relation Recognition

This step recognizes the logical relations between the extracted
atomic formulas by analyzing relations between the corresponding
clauses in the directive sentences. A directive sentence may include
multiple clauses connected by conjunctions. In our running exam-
ple, DS1 includes two clauses connected by “and”; DS2 includes
two clauses connected by “if”. Based on the predicate identification
study, we find that a directive sentence can be composed at two

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

levels. At the higher level, the sentence can have a nested condi-
tional structure using conjunctions like “if”, “then”, and “otherwise”.
At the lower level, the clauses of the conditional structure (called
composite clauses) can be further composed by simple clauses us-
ing conjunctions like “and”, “or”, and “not”. Accordingly, the clause
relation analysis can be done in two steps, i.e., conditional structure

parsing and clause parsing.

3.3.1 Conditional Structure Parsing. Conditional structure parsing
is done by linguistic pattern matching. Three of the authors man-
ually analyzed the directive sentences identified in the predicate
identification study and iteratively created and merged linguistic
patterns for conditional structure parsing. The process resulted in
51 linguistic patterns defined using the following conjunctions: if,
then, otherwise, unless, when, where, since, as soon as, depend on,
because, while cause, indicate. Table 2 shows a subset of the pat-
terns with examples, where the composite clauses are shown with
wavy lines. The complete set of linguistic patterns can be found
in our replication package [2]. We define a regular expression for
each pattern and parse the conditional structure of a sentence by
matching with the regular expressions. During matching, modal
verbs before conditional conjunctions will be ignored, for example
“will cause” will be treated as “cause”.

For each linguistic pattern we define a formula pattern which
specifies the logical relations among the composite clauses.

o If a directive sentence matches a linguistic pattern, then the
matched clauses are extracted as composite clauses and their
logical relations are recorded.

o Ifthe sentence matches no linguistic pattern, then it is treated
as a single composite clause for further analysis.

o If the sentence matches more than one linguistic patterns,
then we parse it according to the most complete and con-
crete pattern, i.e., the pattern that has the most conditional
conjunctions and the deepest nested structure.

For example, the second example in Table 2 will be parsed according
to the second pattern, not the first one.

Running example. For StringBuffer.insert(int, char), DS1
is treated as a single composite clause; DS2 is parsed into two
composite clauses “this method throws an exception” (DS2-1) and
“the offset is invalid” (DS2-2) with an implication relation between
them.

3.3.2 Clause Parsing. Clause parsing further extracts simple clauses
from composite clauses and is done by syntactic structure parsing.
Given a composite clause, we use Spacy to analyze its syntactic
structure by POS tagging and dependency parsing. If the composite
clause has multiple predicates or objects, we split it into multiple
simple clauses with only one predicate and one object and com-
plete the subjects of the simple clauses when required. Each simple
clause will further be parsed to extract an atomic formula, and
the logical relations between simple clauses are determined by the
logical conjunctions (e.g., “and”, “or”) that connect them.
Running example. For StringBuffer.insert(int, char), two
simple clauses “the offset argument must be greater than or equal to
0” (DS1-1) and “the offset argument must be less than or equal to the
length of this sequence” (DS1-2) are recognized with a conjunction

496

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang

relation between them for DS1; DS2-1 and DS2-2 themselves are
simple clauses for DS2.

3.4 Argument Parsing

We adopt different argument parsing methods to recognize two
different kinds of elements in an argument, i.e., expressions (includ-
ing literal constants, mathematical expressions) and API elements
(including API classes/interfaces, properties, methods, parameters,
and return values).

Given an argument, we check whether it is a literal constant or
a mathematical expression by matching with predefined regular
expressions. If the argument is a mathematical expression, then we
iteratively parse its elements.

Given a candidate reference of an API element in an argument,
we first check whether it is an API related pronoun like “this class”,
“this method”, and “this parameter”. If it is, we link it to the target
API element according to the position where the corresponding di-
rective sentence was extracted. Otherwise, we try to recognize the
API element based on an automatically constructed API graph. The
API graph consists of API elements such as classes/interfaces, prop-
erties, methods, parameters, return values and their relationships
such as containment, inheritance, implementation, and instantia-
tion. Each API element has a fully qualified name with the first
sentence of its description text as its definition. We further gener-
ate a list of aliases for it using heuristic rules, such as short name,
method name with the parameter list, etc.. The complete set of
heuristic rules can be found in our replication package [2]. Then
we recognize the API element in the following three steps.

1. Selection of Candidate API Element. We select candidate
API elements for the reference based on both name and context.
Name based selection considers the name similarity between the
reference and API elements. We normalize the reference by remov-
ing stop words and lemmatization and then match it with the names
(both the fully qualified names and aliases) of API elements. We
do not consider parameter names in the matching, as it is rare that
a parameter of a method is referenced outside of the description
of the method. If there are no API elements that fully match the
reference, we try to match each word of the reference. Context
based selection considers the position where the corresponding
directive sentence is extracted, that is the class or method.

2. Candidate Filtering by Type. We filter out candidate API
elements that are not compatible with the required type of the argu-
ment. For example, if the reference belongs to the second argument
of the predicate InstanceOf, it should be a class or an interface. Thus
all the candidate API elements that are not classes or interfaces are
filtered out.

3. Learning based Candidate Ranking. We train a machine
learning model to predict the probability of linking for each candi-
date API element. The top ranked one is chosen as the linked API
element. Given an API reference m and a candidate API element c,
we consider the following five commonly used similarity metrics
as the features:

e Name Lexical Similarity: the maximum similarity between
m and the names of ¢ calculated based on Levenshtein dis-
tance [12];

Learning-Based Extraction of First-Order Logic Representations of APl Directives

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 2: Linguistic Patterns for Conditional Structure Parsing (Partial)

Linguistic Pattern Formula Pattern Example

cyifeg Cc2 —C1

his method returns true if the list is empty-

¢y if ¢y otherwise c3 (c2 = c1) A (mez = c3)

This method returns null if the Component is null; otherwise,returns the passed-in rectangle.
AAAAANAANAAN AN

if ¢1 then ¢y if c3 otherwise c4 ((e1 A es) = ep) A ((e1 A

Ifﬁ/@m\im, then the output will be “(Infinity)” if tﬂﬂ%/\isﬂg& otherwise\ﬂ/]\e/g\/.l\tﬂ.lt

-c3) = c4) will be “-Infinity”.
c1 cause c1 —Cc Passing null parameter will cause MWM&

e Name Cosine Similarity: the maximum similarity between
m and the names of ¢ calculated as the cosine similarity
between their vector representations, which are obtained by
averaging word vectors produced by Word2Vec;

o Context Lexical Similarity: the Jaccard [15] similarity be-
tween the definition sentence of ¢ and the context of m (i.e.,
the surrounding words of m in the directive sentence);

o Context Cosine Similarity: the cosine similarity between the
vector representations of the definition sentence of ¢ and the
context of m, which are obtained by averaging word vectors
produced by Word2Vec;

o Graph Similarity: the graph similarity between ¢ and the API
element where m is extracted from, which is calculated as
1/(d + 1) where d is the shortest distance between them in
the API graph.

We use the 100-dimensional Word2Vec [11] model pretrained on
the Wikipedia corpus [3] and tune it based on the corpus of the
JDK 1.8 documentation using Gensim [1]. Based on the above five
features we train a SVM (Support Vector Machine) model using
scikit-learn®. To prepare the training data we manually annotated
246 API related arguments from the annotated formulas in the pred-
icate identification study. For each positive training sample, we
randomly select five other API elements from the link candidates of
the target reference as negative training samples. We use Word2vec
embeddings instead of BERT embeddings, because BERT embed-
dings can’t be used with cosine similarity or Manhattan/Euclidean
distance, as indicated by existing study [19].

Running example. For the four atomic formulas extracted for
StringBuffer.insert(int, char), “the offset argument” is linked
to the offset parameter of the method; “0” is recognized as a con-
stant value; “the length of this sequence” is linked to the return
value of java.lang.StringBuffer.length(); “this method” is linked
to the method itself; and “an exception” is linked to java.lang.
StringIndexOutOfBoundsException.

3.5 Formula Normalization

We group the extracted formulas for each class or method and
transform them into conjunctive normal form in four steps.

1. Atomic Formula Normalization. Transform the formulas
expressed in passive voice (i.e, ThrownBy, ReturnedBy, and Re-
placedBy) into the corresponding forms of active voice (i.e., Throw,
Return, and Replace). Transform the formulas of negative expression
into the corresponding forms of positive expression if exists. For
example, —LessOrEqual(vy, v2) is transformed into Greater(vy, v2).

2. Composite Formula Normalization. For each directive sen-
tence, generate a sentence formula by connecting all the atomic
formulas extracted from its simple clauses based on the recognized

Shttps://scikit-learn.org/

497

logical relations. Then, generate an overall formula for the class or
method by connecting all its sentence formulas with conjunctions
(i.e., AND) and transform the overall formula into its conjunctive
normal form. Note that it is possible that a simple clause does not
include any predefined predicate due to its vagueness (e.g., “the
offset is invalid”) or failed predicate recognition. In this case, we
treat the whole clause as an atomic formula with a general predicate
Statement, which means that the stated fact holds.

In our running example, a Statement formula will be generated
for the clause DS2-2 (“the offset is invalid”).

3. Implicit Formula Derivation. For each clause of the com-
pound formula in conjunctive normal form, generate derived clauses
according to the following rules:

e A condition that will lead to exceptions is not allowed: if
there is F — Throw(m, e), generate a derived clause —F.

e A value range mentioned in a condition is allowed: if there
is F1 — F2 and F1 is an Equal, NotEqual, Negative, Positive,
Nonnegative, Nonpositive predicate, generate a derived clause
with the corresponding “MayBe” predicate. For example, if
F1is Equal(v1, v2), the derived formula will be MayBe(v1, v2).

e A returned value mentioned in a conditional expression is
possible: if there is F — Return(m, v), generate a derived
clause MayBe(m.RV, v) where m.RV denotes the return value
of the method.

4. Equivalent Formula Merging. Merge different clauses of
the compound formula that express equivalent formulas, including
equivalent formulas with different predicates or argument orders,
e.g., Greater(v1, vz) and Less(vz, v1).

For our running example StringBuffer.insert(int, char), we
obtain the following FOL directives, where offset is the parameter of
the method and length is the return value of java.lang.StringBuffer.
length():

GreaterOrEqual(offset, 0) A LessOrEqual(offset, length) A

(Statement(“the offset is invalid”) — Throw(StringBuffer.insert(int, char),
java.lang.StringIndexOutOfBoundsException))

4 EVALUATION

We conduct a series of experimental studies to evaluate the effec-
tiveness and usefulness of LEADFOL by answering the following
four research questions:

RQ1: What is the intrinsic quality of the key steps of LEADFOL?

RQ2: How does LEADFOL compare with state-of-the-art for FOL
directives extraction?

RQ3: How does LEADFOL generalize to non-JDK APIs?

RQ4: How does LEADFOL support code reviews?

4.1 Quality of Key Steps (RQ1)
We evaluate the quality of the results of the main steps of the
approach (cf. Section 3), except formula normalization. The latter is

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

based on deterministic rules whose quality solely depends on the
output of previous steps.

4.1.1 Directive Sentence Identification. We conducted a ten-fold
cross validation with the 16,103 sentences annotated for the train-
ing of our sentence classifier. We trained the FastText model with
the default configurations of the official implementation. We calcu-
lated the following four metrics: precision, recall, and F1-measure
of directive sentence recognition, and accuracy of sentence classi-
fication (directive or not). The average results of the four metrics
are 95.5%, 94.6%, 95.0%, and 93.7%, respectively, indicating a high
quality of directive sentence identification.

4.1.2 Atomic Formula Extraction. The quality of the atomic for-
mula extraction is reflected by the quality of named entity recogni-
tion of arguments.

We evaluated the quality of named entity recognition with the
11,019 sentences and 16,972 arguments annotated for the training
of the sequence tagging model. For each named entity type (e.g.,
Equal-1, Equal-2, Throw-1, Throw-2), we randomly selected 80%
of the annotated sentences that contain the named entity type
as the training set, 10% as the validation set for hyper parameter
tuning, and the other 10% as the test set. The precision, recall,
and F1-measure of named entity recognition are 86.3%, 82.4%, and
84.3%, respectively, indicating high quality of the atomic formula
extraction. Among the 13.7% named entities that are incorrectly
recognized, 72.7% are arguments that are given wrong entity types
and the other 27.3% are not arguments. We find that the quality of
named entity recognition varies greatly between different types of
named entities. For popular entity types that have enough training
data, the quality is high, while for others that have little training
data, the quality is low. For example, the precision, recall, and F1-
measure for Equal-1 and Equal-2 are all above 85.0%. In contrast,
the precision, recall, and F1-measure for Deprecated are all lower
than 60%. This analysis indicates that the quality of atomic formula
extraction can be further improved by annotating more directive
sentences.

4.1.3 Logical Relation Recognition. We randomly selected a set of
directive sentences from the training data of the directive sentence
classifier to evaluate the quality of logical relation recognition.
Similar to previous studies [7, 27], we adopted a statistical sampling
method [23] to ensure that the estimated population parameter
is at a certain confidence level. The calculated minimum number
of directive sentences to be examined is 384 for this evaluation,
which ensures the estimated accuracy is in the 0.05 error margin
at a 95% confidence level. For the 384 directive sentences sampled
for evaluation, we asked two Master students (not affiliated with
this work), who are familiar with Java, to independently annotate
whether the recognized clauses and logical relations are correct.
When their annotations were different, a third Master student gave
an additional judgment. As a result, the accuracy (i.e., the ratio of
sentences whose logical relations are correctly recognized) is 91.1%.
The main cause for incorrectly recognized logical relations lies in
linguistic patterns that are not defined.

4.1.4 Argument Parsing. The main challenge for argument parsing
is the recognition of API elements. We evaluated the accuracy of API
element recognition with the 246 API related arguments annotated

498

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang

for the API linking prediction model. We conducted a ten-fold cross
validation: each time, nine folds of positive samples together with
the corresponding negative samples are used for training and the
other one fold of positive samples are used for testing. The average
accuracy of API element recognition is 91.5%. The main causes for
incorrectly recognized API elements include: correct API elements
are not chosen as candidates; and general phrases like “the value”
lead to irrelevant API elements being chosen. The accuracy of API
element recognition can be further improved by better candidate
selection strategies, more features, and more training data.

4.2 Accuracy of FOL Directive Extraction (RQ2)

We compared LEADFOL with DRONE using the replication pack-
age’ provided by Zhou et al. [32], which contains FOL directives
extracted for three JDK 1.8 packages (i.e., java.awt, javax.swing and
JjavaFX). We randomly selected 100 methods with at least one FOL
directive extracted from their dataset and compared the FOL di-
rectives extracted by DRONE with those extracted by LEADFOL.
To better align their extracted FOL directives, we transformed the
results of DRONE into conjunctive normal form and split the FOL
formulas into conjunction clauses for comparison. Three of the
authors manually constructed a golden set for the comparison.

As a result, LEADFOL produces 220 conjunction clauses for the
100 methods with a precision of 85.0%; DRONE produces 59 clauses
with a precision of 50.8%. DRONE only supports four types of pa-
rameter constraints (i.e., not null, nullness allowed, range limitation,
and type restriction), while LEADFOL can extract more types of
directives. Among the results of LEADFOL, 127 clauses (86.6% of
which are correct) include predicates that are not supported by
DRONE, e.g., those related to return value.

To further compare with DRONE over the four types of parame-
ter constraints that DRONE supports, we identify 104 conjunction
clauses of these types from the golden set and use them to evaluate
the accuracy of two approaches. The results are shown in Table 3,
where “Correct” means the clauses that are correctly extracted by
the approach, “Incorrect” means the clauses that are extracted with
mistakes, and “Missing” means the clauses in the golden set that
are not extracted by the approach. Of the 104 conjunction clauses,
LEADFOL correctly extracts 77, incorrectly extracts 16, and misses
11, resulting in a precision of 82.8% and a recall of 74.0%; DRONE
correctly extracts 35, incorrectly extracts 28, and misses 41, leading
to a precision of 55.6% and a recall of 33.7%.

We analyze the results and find that the results of DRONE are
limited by its strict matching with linguistic patterns. For example,
for the directive sentence “This must be >= 0 and < the end”, the clos-
est pattern in DRONE is “[something] must be greater/less/larger
than [value]”, which fails to match this sentence because DRONE
does not consider the usage of “>= “<”. Grounded on learning

>

"and “<
based techniques, LEADFOL correctly extracts the FOL directive.
Another reason that LEADFOL can extract more FOL directives lies
in its ability of extracting directives from method and return value
descriptions. In contrast, DRONE only extracts directives from pa-
rameter and exception descriptions. For example, the sentence “If
destCM is null, an appropriate ColorModel will be used” from a
method description implies the directive that destCM (which is a

7https://github.com/DRONE-Proj/DRONE

Learning-Based Extraction of First-Order Logic Representations of APl Directives

Table 3: Comparison of the FOL Directives Extracted by
LeEapFOL and DRONE

LEADFOL DRONE Correct Incorrect | Missing | Total
Correct 27 25 25 77
Incorrect 6 2 8 16
Missing 2 1 8 11
Total 35 28 41 104

method parameter) may be null. LEADFOL can correctly extract the
directive and can link “destCM” to the corresponding parameter.
Moreover, DRONE often fails to recognize API elements mentioned
in different forms as it relies on name matching for the recognition.
For example, for the conditional clause “if input stream is null”
DRONE fails to recognize “input stream” as a method parameter,
while LEADFOL can link it to the corresponding parameter of type
InputStream using the learning based technique.

4.3 Generalization of LEADFOL (RQ3)

To assess the performance of LEADFOL on non-JDK APIs, we ran-
domly selected 100 API methods from Android API 278, and applied
LEADFOL on them. As a result, we extracted 261 FOL directives for
those 100 API methods.

We asked two Master students (not affiliated with this work)
who are familiar with Android to independently annotate whether
the extracted FOL directives are correct. When their annotations
were different, a third Master student gave an additional judgment.
As a result, the accuracy (i.e., the ratio of FOL directives that are
correctly extracted) is 81.3%. The annotators achieved a Cohen’s
Kappa agreement [10] of 0.868, i.e., near perfect agreement.

The main reasons for errors come from different sources, includ-
ing the NLP analysis tool, atomic expression extraction, and logical
relation recognition. Nonetheless, we contend that the results indi-
cate that LEADFOL can be generalized to other non-JDK libraries.
Preparing additional annotation data from the specific API library
may lead to an even better performance.

4.4 Usefulness for Supporting Code Reviews
(RQ4)

Detecting API misuses is one potential application area of LEADFOL.

To show the usefulness of the extracted FOL directives for detecting

API misuses, we asked participants to complete code review tasks

with a tool based on FOL directives and compared it with a baseline.

4.4.1 Data Preparation. We randomly selected API methods from
JDK 1.8. For each API method, we checked the corresponding API
reference documentation to ensure that it contains at least one
directive sentence. Then, we searched the name of the API method
on GitHub to obtain a list of candidate code snippets. We selected
the first code snippet that meets the following criteria:

the code snippet is a complete method;

the given API method is called in the code snippet;

the code snippet is less than 50 lines;

there is a guard condition statement for the given API method
and this guard condition statement is related to the directive
sentence in the API reference documentation;

8https://developer.android.com/reference/packages

499

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

X @@ -323,6 +323,9 @@ private String getTargetMethodName(

final String pluginMethodName - pluginMethod.getName();
final String targetClassMethodName - pluginMethodName
.replace(pluginPrefix, "");

final char firstCharOfTargetName = targetClassMethodName.charAt(@);
final int charType = Character.getType(firstCharOfTargetName);
if (charType == Character.LOWERCASE_LETTER) {

(a) Missing condition

final String pluginMethodName - pluginMethod.getName();
final String targetClassMethodName - pluginMethodName
.replace(pluginPrefix, "");
+ if (targetClassMethodName.isEmpty()) {
return null;

an

+ }
final char firstCharOfTargetName = targetClassMethodName.charAt(@);
final int charType = Character.getType(firstCharOfTargetName);
if (charType Character. LOWERCASE_LETTER) {

(b) Correct code

Figure 1: API Misuse Example for Missing Guard Condition

o the authors were able to confirm that the code snippet is
bug-free.

For each code snippet found, we manually removed the guard con-
dition statement to create a buggy code snippet variant with API
misuse, because missing guard conditions are a common type of
API misuse [26] in the wild. As shown in [26], 66% of the defect fixes
applied in the Mozilla Firefox project are due to missing guard condi-
tions. For example, Figure 1 shows a pull request’ to fix a misuse of
java.lang.String.charAt(int), where the only difference between
the buggy code and the fix is that the buggy code lacks a guard
condition statement for calling java.lang.String.charAt(int). We
followed this scenario when creating buggy code snippets for our
study. We repeated this process until we obtained 16 bug-free code
snippets and their corresponding 16 buggy code snippet variants.
For each code snippet, we randomly chose whether to use either
the bug-free version or the buggy version in the study. As a result,
we obtained 16 code snippets (8 are bug-free and 8 are buggy) and
each code snippet corresponds to a code review task with ground
truth. We included the bug-free code snippets in the study to avoid
potential bias caused by participants knowing that all code they
see in the study is buggy beforehand. All 16 tasks are available in
our replication package!’.

4.4.2 Tool Support. The study participants were to uses two tools,
assisting them during the code review task. Both tools support only
JDK APIs.

We designed a tool based on the FOL directives extracted by
LEADFOL. This tool accepts a code snippet as input and highlights
the API methods with FOL directives extracted from API documen-
tation. If the developer clicks an API method, it will show its FOL
directives in detail. In order for participants to understand the API,
the tool also shows basic information about the AP, including its
signature, the first sentence of its description, and the definition of
its parameters. Our tool only highlights APIs with directives, not
all the APIs involved.

“https://github.com/magento/magento2-phpstorm-plugin/pull/416/commits/d2e840d-
0e0d905fdb76e74386586a4ff2756{68f
Ohttps://github.com/FudanSELab/Research-ESEC-FSE2021-
APIDirective/blob/main/CodeReview/Code%20Review%20Tasks.xlsx

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

600

-

500 q

» oo

> oo

9]
£ 3004 §
=

——

_

Our Tool

200 4

100

_1L

Baseline

Approach

Figure 2: Completion Time for Code Reviews

The baseline tool is documentation-based and shows links to
the API reference documentation for all APIs involved in the code
snippet. When using the baseline, participants are allowed to use
search engines but the search scope is limited to the JDK reference
documentation. We limit participants’ access to JDK reference docu-
mentation in the baseline because we want to make the two groups
(i.e., using our tool or the baseline) work based on the same infor-
mation source (i.e., the documentation) but with different means
(FOL directive extraction vs. information retrieval).

4.4.3 Protocol. We asked 16 Master students with 1-4 years of Java
programming experience to participate in the study. They represent
novice developers, which are the primary target audience for our
code review tool. We conducted a pre-experiment survey on their
Java programming experience and divided them into two roughly
equivalent groups (G4 and Gp) based on the survey. We randomly
divided the 16 tasks into two groups (T4 and Tg), each with 4 tasks
with buggy code snippets and 4 tasks with bug-free code snippets.

We asked participants to complete code review tasks with our
tool and the baseline tool. We adopted a balanced treatment dis-
tribution for the groups. Participants in group G4 were asked to
complete the tasks in group T4 with our tool and the tasks in group
Tg with the baseline. Conversely, participants in group Gg were
asked to complete the tasks in group T4 with the baseline and the
tasks in group Tp with our tool. For each participant, the tasks
were interleaved, one completed with our tool and one with the
baseline. For each code review task, participants were required to
check whether the code snippet contains API misuses and explain
the reasons for their judgment. The answer and completion time of
each participant for each task were recorded.

4.4.4 Result. We checked the participants’ answers for each task
and evaluated their correctness through the ground truth. From
a total of 256 answers, we received 20 incorrect answers (9 using
our tool and 11 using the baseline), mainly because participants did
not understand the code or lacked background knowledge (e.g., the
concept of thread lock). We removed those incorrect answers from
the following analysis since our focus is on the efficiency of the
code review process. We selected relatively simple tasks and we
expected that the participants would be able to solve all the tasks
correctly.

500

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang

Figure 2 shows the participants’ completion time using our tool
and the baseline. Using our tool, participants completed the tasks
30.4% faster (112s vs. 161s on average) compared to the baseline.
We used Welch’s T-test [29] for verifying the statistical significance
of this difference. The difference in time is statistically significant
(p = 0.0006 << 0.05). In addition, the informal feedback we re-
ceived from participants shows that when using the baseline they
usually spent a lot of time to search and read the API documenta-
tion to check whether the API had directives and to understand
the directives. When using our tool, participants could quickly fil-
ter out APIs that do not have directive sentences, and focus on
APIs with directives that were highlighted by our tool. Compared
with the original sentences, FOL directives are intuitive and easy
to understand.

The participants also gave us some suggestions for improvement,
such as, sorting the FOL directives involved in order of importance,
giving priority to important directives (e.g., directives that can cause
exceptions), and hoping that we can provide correct API usage code
samples.

We conclude that using our tool that provides the FOL directives
extracted by LEADFOL, significantly decreases the amount of time
developers need for code review tasks related to API misuse.

4.5 Threats to Validity

Both the predicates identification and the evaluation involve data
annotation and data sampling, thus common threats to the internal
validity include subjective judgment of the involved participants
and randomness of the sampling. For minimizing such threats, we
followed commonly used sampling and data analysis techniques, in-
volving multiple annotators, conflict resolution steps, and reported
agreement coefficients, where appropriate. Since we make our data
available for replication, these data sets can be further evolved and
corrected (if needed) by other researchers.

A threat to the external validity is the limited number of subjects
(e.g., API libraries, documentation types, directive sentences) con-
sidered in the predicate identification study and in the evaluation.
Our findings may not generalize to other libraries or documentation

types.

5 RELATED WORK

API documentation is an important knowledge source for develop-
ers, and there are many studies on the knowledge in API documen-
tation and its patterns. Robillard et al. [9] identified 12 knowledge
patterns in API documentation, such as functionality, concepts, and
directives. Among them, directives are especially important knowl-
edge for developers because they are related to the correct usage
of APIs. Monperrus et al. [13] focused on the directives in API doc-
umentation and identified 23 kinds of API directives. Other studies
related to API documentation focus on different aspects, such as
API documentation evolution [22] and documentation reuse [16].
Another line of work focused on extracting sentences providing
specific types of knowledge from API documentation. Liu et al. [8]
extracted functionality and directives sentences from API documen-
tation to construct an API knowledge graph based on a sentence
classifier. Li et al. [7] extracted API caveats from API documentation
based on syntactic patterns to improve accessibility. That research

Learning-Based Extraction of First-Order Logic Representations of APl Directives

extracted sentences containing knowledge from API documenta-
tion without further processing. Different from those works, we
not only use the directive sentence classifier to extract sentences
containing directives, but also parse them into a standardized form
expressed in first-order predicate logic.

Other research extracted specific kinds of formally expressed API
directives from documentation, e.g., resource specifications [31],
temporal constraints [17], parameter constraints [25], and call-
order/condition-checking [20]. Recently, Zhou et al. [32] proposed
an approach called DRONE that extracts API directives represented
in first-order logic (FOL) formulas to express four types of param-
eter constraints (i.e., Nullness, Nullable, Range Limitation, Type
Restriction). These approaches rely on linguistic patterns to extract
formal expressions of API directives, hence can extract fewer di-
rective types with lower accuracy. In contrast, our learning-based
approach is more general and achieves higher extraction accuracy.

The work of Zhou et al. [32] is most similar to ours. Next we
will make a deeper comparison. First, they supports four types of
parameter constraints, while we support additional usage-related
and return-value-related directives. Second, they relies on 64 man-
ually defined linguistic patterns to extract FOL formulas and parse
arguments based on name match. In contrast, we design a 5-step
pipeline using (deep) learning technologies to extract FOL formu-
las and each step is designed as a subtask with clear input/output
definition. Among the steps, the atomic formula extraction uses a
joint-learning model which can more precisely identify arguments
and predicates. The argument parsing step uses an API graph and
combines several different similarity metrics to parse the API ele-
ments references. Therefore, our approach is more general and can
extract more directives, more accurately.

6 CONCLUSIONS AND FUTURE WORK

We analyzed a large set of API directives extracted from the JDK
1.8 API documentation. We identified 24 predicates, classified in
four categories, and three types of arguments that are used for
representing API directives in first order logic (FOL) format.

Based on these findings, we proposed a learning based approach
for extracting FOL representations of API directives, called LEAD-
FOL. Our intrinsic and extrinsic evaluation shows that LEADFOL can
accurately extract more FOL directives than a state-of-the-art ap-
proach (i.e, DRONE [32]) and that the extracted FOL directives
help developers detect of API misuse problems faster, during code
reviews.

Our future work will focus on improving the accuracy of FOL
directive extraction and using the extracted FOL directives for dif-
ferent purposes, such as question answering.

7 DATA AVAILABILITY

All the data used in this study is provided in the replication pack-
age [2].

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of
China under Grant No. 61972098.

501

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

REFERENCES

[1] 2021. gensim. Retrieved February 25, 2021 from https://radimrehurek.com/
gensim/

2021. Replication Package. Retrieved June 15, 2021 from https://fudanselab.github.
io/Research-ESEC-FSE2021- APIDirective/

2021. word2vec-api. Retrieved February 25, 2021 from https://github.com/3Top/
word2vec-api

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). 4171-4186.
https://doi.org/10.18653/v1/n19-1423

Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using
machine learning to identify knowledge in API reference documentation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019. 109-119. https://doi.org/10.1145/
3338906.3338943

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84-90.

Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu,
and Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API
Caveats Knowledge Graph. In 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018.
183-193. https://doi.org/10.1109/ICSME.2018.00028

Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating query-specific class API sum-
maries. In Proceedings of the ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. 120-130.
https://doi.org/10.1145/3338906.3338971

Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Trans. Software Eng. 39, 9 (2013), 1264-1282.
https://doi.org/10.1109/TSE.2013.12

Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica 22, 3 (2012), 276-282.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composi-
tionality. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada, United States, Christopher J. C.
Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (Eds.). 3111-
3119.

Frederic P Miller, Agnes F Vandome, and John McBrewster. 2009. Levenshtein
distance: Information theory, computer science, string (computer science), string
metric, damerau? Levenshtein distance, spell checker, hamming distance. (2009).

Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. 2012. What
should developers be aware of? An empirical study on the directives of API
documentation. Empirical Software Engineering 17, 6 (2012), 703-737. https:
//doi.org/10.1007/s10664-011-9186-4

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasufumi Taniguchi, and Xu
Liang. 2018. doccano: Text Annotation Tool for Human. https://github.com/
doccano/doccano Software available from https://github.com/doccano/doccano.
Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Su-
pachanun Wanapu. 2013. Using of Jaccard coefficient for keywords similarity.
In Proceedings of the international multiconference of engineers and computer
scientists, Vol. 1. 380-384.

Mohamed A Oumaziz, Alan Charpentier, Jean-Rémy Falleri, and Xavier Blanc.
2017. Documentation reuse: Hot or not? An empirical study. In International
Conference on Software Reuse. Springer, 12-27. https://doi.org/10.1007/978-3-
319-56856-0_2

Rahul Pandita, Kunal Taneja, Laurie Williams, and Teresa Tung. 2016. ICON:
Inferring Temporal Constraints from Natural Language API Descriptions. In 2016
IEEE International Conference on Software Maintenance and Evolution, ICSME 2016,
Raleigh, NC, USA, October 2-7, 2016. IEEE Computer Society, 378-388. https:
//doi.org/10.1109/ICSME.2016.59

Lev-Arie Ratinov and Dan Roth. 2009. Design Challenges and Misconceptions
in Named Entity Recognition. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning, CoNLL 2009, Boulder, Colorado, USA,
June 4-5, 2009. 147-155.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (Eds.). Association for Computational Linguistics, 3980-3990.
https://doi.org/10.18653/v1/D19-1410

[2]
[3]
[4]

[

[10

[11

[12

[13

[14

[15

[16]

[17

(18]

[19

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://fudanselab.github.io/Research-ESEC-FSE2021-APIDirective/
https://fudanselab.github.io/Research-ESEC-FSE2021-APIDirective/
https://github.com/3Top/word2vec-api
https://github.com/3Top/word2vec-api
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3338906.3338943
https://doi.org/10.1145/3338906.3338943
https://doi.org/10.1109/ICSME.2018.00028
https://doi.org/10.1145/3338906.3338971
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1007/s10664-011-9186-4
https://doi.org/10.1007/s10664-011-9186-4
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.1007/978-3-319-56856-0_2
https://doi.org/10.1007/978-3-319-56856-0_2
https://doi.org/10.1109/ICSME.2016.59
https://doi.org/10.1109/ICSME.2016.59
https://doi.org/10.18653/v1/D19-1410

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

[20] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,

and Jianling Sun. 2020. API-Misuse Detection Driven by Fine-Grained API-
Constraint Knowledge Graph. In 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020. IEEE, 461-472. https://doi.org/10.1145/3324884.3416551

Martin P. Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empir. Softw. Eng. 16, 6 (2011), 703-732.

Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An empirical study on
evolution of API documentation. In International Conference on Fundamental
Approaches To Software Engineering. Springer, 416—-431. https://doi.org/10.1007/
978-3-642-19811-3_29

Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling.
Vol. 15. Springer Science & Business Media.

Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2019. Investigating next steps in static API-misuse detection. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). IEEE, 265—
275. https://doi.org/10.1109/MSR.2019.00053

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:
Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In Fifth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2012, Montreal, QC, Canada, April 17-21, 2012, Giuliano Antoniol, Antonia
Bertolino, and Yvan Labiche (Eds.). IEEE Computer Society, 260-269. https:
//doi.org/10.1109/ICST.2012.106

Suresh Thummalapenta and Tao Xie. 2009. Alattin: Mining Alternative Patterns
for Detecting Neglected Conditions. In ASE 2009, 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland, New Zealand, November
16-20, 2009. IEEE Computer Society, 283-294. https://doi.org/10.1109/ASE.2009.72
Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie,
and Tuo Wang. [n.d.]. A learning-based approach for automatic construction of

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai, Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang

domain glossary from source code and documentation. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). 97-108. https://doi.org/10.1145/3338906.3338963

[28] Jason W. Wei and Kai Zou. 2019. EDA: Easy Data Augmentation Techniques for

Boosting Performance on Text Classification Tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (Eds.). Association for Computational Linguistics, 6381-6387.
https://doi.org/10.18653/v1/D19-1670

Bernard L Welch. 1947. The generalization of Student’s problem when several
different population variances are involved. Biometrika 34, 1/2 (1947), 28-35.
https://cinii.ac.jp/naid/10026469617/en/

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou, and Bo Xu.
[n.d.]. Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers. 1227-1236. https://doi.org/10.18653/v1/P17-1113

Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring Resource
Specifications from Natural Language API Documentation. In ASE 2009, 24th
IEEE/ACM International Conference on Automated Software Engineering, Auck-
land, New Zealand, November 16-20, 2009. IEEE Computer Society, 307-318.
https://doi.org/10.1109/ASE.2009.94

Yu Zhou, Changzhi Wang, Xin Yan, Taolue Chen, Sebastiano Panichella, and
Harald C Gall. 2018. Automatic detection and repair recommendation of directive
defects in Java API documentation. IEEE Transactions on Software Engineering
(2018). https://doi.org/10.1109/TSE.2018.2872971

https://doi.org/10.1145/3324884.3416551
https://doi.org/10.1007/978-3-642-19811-3_29
https://doi.org/10.1007/978-3-642-19811-3_29
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1109/ASE.2009.72
https://doi.org/10.1145/3338906.3338963
https://doi.org/10.18653/v1/D19-1670
https://ci.nii.ac.jp/naid/10026469617/en/
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.1109/ASE.2009.94
https://doi.org/10.1109/TSE.2018.2872971

