A Learning-Based Approach for Automatic Construction of
Domain Glossary from Source Code and Documentation

Chong Wang* Xin Peng" " Mingwei Liu*
Fudan University Fudan University Fudan University

China China China

Zhenchang Xing Xuefang Bai* Bing Xie

Australian National University Fudan University Peking University

Australia China China

Tuo Wang"
Fudan University
China
ABSTRACT KEYWORDS

A domain glossary that organizes domain-specific concepts and
their aliases and relations is essential for knowledge acquisition and
software development. Existing approaches use linguistic heuristics
or term-frequency-based statistics to identify domain specific terms
from software documentation, and thus the accuracy is often low.
In this paper, we propose a learning-based approach for automatic
construction of domain glossary from source code and software
documentation. The approach uses a set of high-quality seed terms
identified from code identifiers and natural language concept def-
initions to train a domain-specific prediction model to recognize
glossary terms based on the lexical and semantic context of the
sentences mentioning domain-specific concepts. It then merges the
aliases of the same concepts to their canonical names, selects a set
of explanation sentences for each concept, and identifies “is a”, “has
a”, and “related to” relations between the concepts. We apply our
approach to deep learning domain and Hadoop domain and harvest
5,382 and 2,069 concepts together with 16,962 and 6,815 relations
respectively. Our evaluation validates the accuracy of the extracted
domain glossary and its usefulness for the fusion and acquisition
of knowledge from different documents of different projects.

CCS CONCEPTS

« Software and its engineering — Documentation; - Comput-
ing methodologies — Information extraction.

“C. Wang, X. Peng, M. Liu, X. Bai, and T. Wang are with the School of Computer
Science and Shanghai Key Laboratory of Data Science, Fudan University, China.
X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3338963

documentation, domain glossary, concept, knowledge, learning

ACM Reference Format:

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing
Xie, and Tuo Wang. 2019. A Learning-Based Approach for Automatic Con-
struction of Domain Glossary from Source Code and Documentation. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26-30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338963

1 INTRODUCTION

Software projects usually belong to specific domains, for exam-
ple, TensorFlow [18] and PyTorch [14] are deep learning libraries,
Hadoop [6] and HBase [7] are distributed database systems. Each
domain has a set of business or technical concepts. These concepts
are frequently mentioned in source code and documentation of
software projects in a domain. They can be mentioned in full names
as well as various aliases (e.g., abbreviations and other morpholog-
ical variants). Many concepts are correlated, such as hypernym-
hyponym, whole-part, etc. Organizing domain-specific concepts,
their aliases and relations in a domain glossary is essential for
knowledge acquisition and software development. Moreover, based
on a domain glossary we can semantically link the elements (e.g.,
classes/methods, APIs, Q&A posts, document fragments) from dif-
ferent artifacts. These links can facilitate many software engineer-
ing tasks such as developer question answering [50, 57], traceability
recovery and maintenance [32, 45, 55, 56], feature location [29, 54],
API recommendation [44, 49], and code search [39].

Due to the complexity and fast development of a domain, it is
often laborious and expensive to manually construct a comprehen-
sive domain glossary. Therefore, researches have been advocated to
investigate automatic extraction of glossary terms or domain con-
cepts from different kinds of software artifacts. Some researches [22,
30, 40] extract glossary terms from requirements documents. These
approaches use linguistic heuristics or term-frequency-based sta-
tistics to identify domain specific terms from noun phrases, and
thus the accuracy is often low. Moreover, these approaches only
cluster relevant terms together and cannot identify the aliases and

https://doi.org/10.1145/3338906.3338963
https://doi.org/10.1145/3338906.3338963

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

relations of a specific concept. Some researches [26, 60] extract
domain concepts and relations from Q&A websites such as Stack
Overflow, but rely on Stack Overflow tags and human labelled data
for the estimation of domain relevance.

In this paper, we aim at extracting domain-specific concepts, their
aliases and relations from both source code and documentation of
software projects in the same domain in an unsupervised way.
The challenges for this task lie in several aspects (see examples
in Section 2). First, knowledge about domain concepts and their
relations is often scattered in different documents or even different
projects. Second, the same concepts are often mentioned in different
aliases in different places. Third, the relevance of concepts to a
specific domain cannot be reliably determined by lexical heuristics
or term frequency.

In this work, we propose a learning-based approach for automatic
construction of domain glossary from source code and software
documentation. The basic idea of our approach is twofold. First,
domain-specific concepts in documentation are often used as iden-
tifiers in source code and the relations between concepts may be
inferred from structural relations between corresponding code ele-
ments. Second, using the sentences that mention the high-quality
seed terms identified from code identifiers and natural language
concept definitions as training data, we can learn a domain-specific
prediction model to recognize more glossary terms based on the
lexical and semantic context of the sentences mentioning domain-
specific concepts. Based on these two ideas, our approach first
extracts a set of candidate terms from the source code and doc-
umentation of different projects of the target domain, and then
merges the aliases of the same concepts to their canonical names.
After that, our approach selects a set of explanation sentences for
each concept, and further identifies “is a” (hypernym-hyponym),
“has a” (whole-part), “related to” relations between the concepts.

We implement the approach and conduct an empirical study
with two technical domains (deep learning and Hadoop). The study
leads to the following findings. First, our approach outperforms
a state-of-the-art approach [22] in documentation based domain
glossary extraction. Second, domain glossary extraction provides
an effective way to fuse the domain knowledge from different doc-
uments of different projects. Third, the extracted domain glossary
complements general knowledge bases such as WikiPedia. Fourth,
the extracted domain glossary can help developers to acquire the
required knowledge from documents more efficiently.

This work makes the following contributions.

1) We propose a learning-based approach for automatic construc-
tion of domain glossary from source code and documentation.

2) We apply the approach to the deep learning domain and the
Hadoop domain and harvest 5,382 and 2,069 concepts together with
16,962 and 6,815 relations respectively.

3) We evaluate the effectiveness of the approach for domain
glossary extraction and the usefulness of the extracted domain
glossary for knowledge fusion and software knowledge acquisition.

2 MOTIVATION

Domain concepts are often mentioned in various aliases. When
encountering an alias in code or documentation that developers do
not understand, the first question to ask is what this alias represents.

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang

For example, “NAS” is the abbreviations of “Neural Architecture
Search” in deep learning domain, but it is hard to find explanations
for it by searching Google. In this situation, just knowing the full
name of the alias’ corresponding domain concept is already very
helpful for developers. Knowing the name of a domain concept is
of course not enough. Because of the lack of domain knowledge,
developers further need to know the domain-specific meaning of
the concept. For example, in deep learning domain, “LSTM” is the
abbreviation of “Long Short Term Memory” which is an advanced
neural network structure that many developers may not know.
An explanation of the concept will greatly help the developers
understand it.

In addition to understand the meaning of domain-specific con-
cepts, it is also very important for the developers to establish an un-
derstanding of the relationships between domain concepts, such as
hypernym-hyponym, whole-part, or semantically correlated. Know-
ing the relationships between domain concepts can help developers
understand domain knowledge in source code and documentation,
and help them make informed decisions in adopting certain tech-
niques. For example, a developer is learning to use Seq2Seq model.
When she knows the relation {Seq2Seq, has a, RNN}, {RNN, has
a, RNN Cell}, and {LSTM Cell, is a, RNN Cell}, she can naturally
think of using LSTM Cell to replace the RNN Cell in the Seq2Seq
model. Furthermore, when she knows more variants of RNN Cell
(e.g., GRU Cell), she will soon be able to build up her understanding
of Seq2Seq. This knowledge may change the developer’s choice of
more advanced model in her work.

Therefore, a solution to build domain glossary automatically is
needed. This solution can exploit the domain concepts mentioned in
source code and documentation. However, the following challenges
must be addressed. First, domain concepts and their explanations
and relationships are often scattered in many documents of different
projects. For example, Pytorch [14] has a package nn, but we cannot
find a sentence for explaining what nn is in its tutorials or reference
documentation. Meanwhile, Tensorflow also has a package nn and
we can find a sentence in its API reference documentation that ex-
plains the purpose of the package: “Wrappers for primitive Neural
Net (NN) Operations”. From this sentence we may infer that nn in
PyTorch also stands for Neural Net. Thus it is important to fuse the
same concepts (may be in different aliases) mentioned in different
projects of the same domain. Second, the same concepts are often
mentioned in various aliases in different parts of the documents.
For example, “neural network” is mentioned in different forms in
Deeplearning4j, TensorFlow, and PyTorch (e.g., “NN”, “Neural Net”,
“neural nets”, “neural networks”, “nn”). The alias can be different
abbreviations of the full names or different morphological variants.
We need to identify these aliases and resolve them to canonical
forms before we can reliably extract explanation sentences and
relationships of domain concepts. Third, the relevance of a term to
a specific domain cannot be reliably determined by simple lexicon
heuristics or term frequency metrics. For example, some lexical
heuristics may assume that acronyms are glossary terms, but many
acronyms such as “USE”, “SUPPORT”, and “NOTE” in deep learn-
ing domain are not. Term frequency metrics are not reliable either
because some frequent noun phrases are irrelevant to the target
domain, while some relevant concepts are only mentioned a few
times. The lexical and semantic context of the sentences in which

A Learning-Based Approach for Automatic Construction of Domain Glossary from Source Code and Documentation

Relation/Explanation Identification

Relation
. . 1> Concept
Identification Relations

Domain Concepts and
Mentioning Sentences

Explanation | Concept
Extraction Explanations

Figure 1: Approach Overview

Preprocessing. Concept Extraction
7] COde i
Analysis Elements Extraction

Source Code Seed Terms

Extended Term

q Extraction

Technical Document Candidate Terms

Documents Analysis Alias Merging |F—+

~
%

domain-specific concepts are mentioned must be considered. More-
over, source code can be used as an auxiliary resource, for example,
many class names and package names represent the domain con-
cepts.

3 APPROACH

An overview of the approach is presented in Figure 1. It includes
three phases, i.e., preprocessing, concept extraction, and relation/ex-
planation identification.

The purpose of preprocessing is to extract useful information
from the input corpus and prepare the required data for the subse-
quent phases. It includes two steps, i.e., code analysis and document
analysis. Code analysis parses the source code and extracts code
elements (e.g., packages and classes) and their relations (e.g., con-
tainment, inheritance, and aggregation) from the code. Document
analysis parses the documents and extracts sentences from them.

The purpose of concept extraction is to extract domain concepts
from source code and documents. It includes three steps, i.e., seed
term extraction, extended term extraction, and alias merging. Seed
term extraction uses heuristics to identify a set of initial seed terms
from the sentences with the aid of code elements. By treating the
seed terms as the initial labelled data, extended term extraction
uses a semi-supervised learning method to iteratively identify more
candidate terms from the sentences. Note that these candidate terms
may be the aliases of the same concepts. Therefore, alias merging
identifies and merges concept aliases (e.g., morphological synonyms
and abbreviations) that are extracted from different sentences.

The purpose of relation and explanation identification is to pro-
vide relations and explanations for the extracted domain concepts.
It includes two steps, i.e., relation identification and explanation
extraction. Relation identification identifies “is a”, “has a”, and “re-
lated to” relations between concepts with the aid of code elements.
Explanation extraction selects a set of explanation sentences for
each concept.

We implement our approach in Python and the natural language
processing tool used in our implementation is spaCy [17]. The
remaining of the section details the steps of the approach and cor-
responding implementation. All the examples used in this section
are from the deep learning domain and its projects Deeplearning4;j,
TensorFlow, and PyTorch.

3.1 Preprocessing

Our implementation includes code analyzers for Java and Python,
which are implemented based on javalang [9] (a Java parser imple-
mented in Python) and the build-in module ast of Python respec-
tively. The code analyzers extract the packages/modules, classes,
and various relations between them from the source code.

The technical documents of many projects are web pages that
are available online. Therefore, we implement a crawler based on
Scrapy [16] to obtain the documents. We use BeautifulSoup [1] (a

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Python parser for HTML and XML files) to parse the obtained web
pages. We then clean the obtained web page content by handling
different kinds of special HTML elements (for example replacing
code fragments with “__CODE__”, replacing tables with “__TA-
BLE__”) and recovering the sentences that are broken by tags like
“<p>" and “". Finally we extract the plain text from the content
and split the text into sentences based on punctuations.

3.2 Seed Term Extraction

Seed term extraction automatically identifies a small set of terms
with high confidence using heuristics. To find an optimal set of
heuristics, we try different combinations of heuristics (e.g., extract-
ing all-caps words in text and local variable/parameter names in
code as seed terms) and adjust the heuristics based on the results.
Finally we choose the following two heuristic rules that can be used
to extract high-quality terms from source code and documents.

1. Acronym Appears with Its Full Name in Document

If an acronym appears together with its full name in a document,
the acronym is likely a term. This rule is embodied by the following
three sentence patterns.

1) [full name] ([acronym]), for example “By design, the output
of a recurrent neural network (RNN) depends on arbitrarily distant
inputs.”;

2) [acronym)] ([full name]), for example “Feed forward neural
networks are comprised of dense layers, while recurrent neural net-
works can include Graves LSTM (long short-term memory) layers.”.

3) [acronym]: [full name], for example “Enumeration used to
select the type of regression statistics to optimize on, with the
various regression score functions - MSE: mean squared error -
MAE: mean absolute error - RMSE: root mean squared error - RSE:
relative squared error - CorrCoeff: correlation coefficient.”.

To enforce this rule, we first match a sentence with the above
three patterns and then identify the phrase for the full name based
on the acronym. For example, based on the acronym “RNN’ we can
identify the three-word phrase “recurrent neural network” before
the bracket as its full name. For each matched acronym both its full
name and itself are recognized as seed terms.

2. Package/Class Name Appears in Document

If the name of a package or class appears as ordinary text (i.e.,
not code elements) in a document, the name is likely a term. For
example, in the sentence “During NN training, each X iterations,
executors will send encoded dense updates with lower threshold”
from Deeplearning4j, the term “NN” is the name of the package
org.deeplearning4j.nn. The term “NN” here means neural network,
thus can be recognized as a seed term. Considering finer-grained
code elements such as parameters and local variables may produce
vast terms, but most of them are false ones. To ensure the quality
of seed terms we only consider course-grained code elements (i.e.,
package and class) in seed term extraction.

To enforce this rule, we obtain the names of all the packages
and classes in the code elements and split them by camel case; we
then search for the split words or phrases in all the sentences (case
insensitive) and treat all the matched ones as seed terms.

Seed terms extracted by the above two rules may be ordinary
phrases that happen to be used as a package/class name or general
technical terms that are not specific to the target domain. For exam-
ple, in the sentence “Computes the aggregate score as a sum of all of

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

the individual scores of each of the labels against each of the outputs
of the network” from Deeplearning4j, the phrase “a sum” happens
to be the name of the class org.nd4j.linalg.api.ops.impl.accum.ASum.
But obviously the phrase is not a term. Examples of general techni-
cal terms include those related to file or string operations. These
ordinary phrases and general technical terms need to be eliminated
to ensure the quality of the extracted seed terms. To this end, we
use the following three rules to further eliminate irrelevant terms.
The seed terms that satisfy any condition are eliminated.

e the term only appears in the documents of one project;

e the term includes a single word and the word is a common
word included in WordNet [20];

e the term includes a stop word at the beginning or end.

The stop words we use in our implementation are the English
stop words defined by NLTK [12] (a natural language toolkit) plus

» o« »

some special stop words related to programs (including “get”, “set”,

» o«

“return”, “test”, “util”).

3.3 Extended Term Extraction

Extended term extraction uses machine learning to identify more
terms from the sentences. It treats the term identification as a se-
quence tagging task [46], which is to predict the corresponding tag
sequence of an observation sequence. There are many NLP prob-
lems that are solved as sequence annotations, such as part of speech
tagging (POS), chunking, and named entity recognition (NER). The
tagging scheme we use for this task is the IOBES scheme [46],
which is widely used for sequence tagging tasks. In the schema, “B”
(“Beginning”), “I” (“Inside”), and “E” (“End”) respectively indicate
that the current token is the beginning, middle, and end of a term;
“S” (“Single”) indicates that the current token itself constitutes a
term; and “O” (“Outside”) indicates a normal token. For example,
the tagging of a sentence that includes two terms (i.e., “recurrent
neural network” and “RNN’) is presented below.

“O: By O: design O:, O: the O: output O: of O: a B: recurrent I:
neural E: network O: (S: RNN O:) O: depends O: on O: arbitrarily
O: distant O: inputs O: .”

Our machine learning model for term identification is the widely
used LSTM-CRF model [36], which combines LSTM (Long-Short
Term Memory) networks and a CRF (Conditional Random Fields)
layer. It is an end-to-end learning model that does not require
handcrafted features. We use the implementation of the LSTM-CRF
model provided by Guillaume et al. [11]. To train the model we
generate a sequence pair (an input token sequence and its corre-
sponding tag sequence) from each sentence in the labelled data and
use these sequence pairs as the training data. When used for term
identification (i.e., prediction), the model takes as input a token
sequence generated from an input sentence and produces as output
a tag sequence. The words that are tagged with “S” and the phrases
that are tagged with “B”, “I”, and “E” in the output tag sequence are
identified as glossary terms.

In both the training and prediction we use pretrained word vec-
tors to represent the tokens in the input token sequence. The word
vectors are pretrained by fine tuning the GloVe [43] word vectors.
Our implementation is based on glove.840B.300d [5], which has 840
billion tokens, 2.2 million cased vocabulary, and 300 vector dimen-
sions. And the word2vec implementation we use is gensim [4].

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang

We use a semi-supervised method to train the model and use an
iterative process to identify more terms. The process starts with the
seed terms by treating the sentences that include the seed terms
as the labelled data and all the other sentences as unlabelled data.
After each iteration, a term identification model is trained and used
to identify more terms from the sentences. Similar to seed term
extraction, this iterative term extraction process also uses the three
rules (i.e., term appearing in only one project, common word in
WordNet, or including stop words) to filter out irrelevant terms.
All the unlabelled sentences with newly identified terms are then
added into the labelled data to start the next iteration. This filtering
strategy ensures the quality of the sentences that are iteratively
added into the labelled data.

The whole iterative process ends when any of the following
conditions is met: 1) no new terms are identified by the trained
model; 2) the number of iterations reaches a predefined limit (10
in our implementation); 3) there are no unlabelled sentences. In
the last iteration all the newly identified terms are accepted except
those including stop words at the beginning or end of their names.

For example, in this step “Activation Layer” is identified as a
term from the sentence “Imports an Activation layer from Keras.”
from Deeplearning4;j.

To ensure the quality of the extracted terms, we further refine
the results of seed and extended term extraction to produce the
candidate terms. First, eliminate general technical terms. We use
the following equation to estimate the generality of a term, where
freqq(t) (freqq(t)) and TNy(t) (TN4(t)) are the frequency and
occurrence number of a term ¢ respectively and Ny (Ny) is the
token number in the general technical corpus (domain corpus). We
eliminate the terms whose generality is higher than a threshold
(0.2 in our implementation), which is chosen based on trial term
refinement using different thresholds. The general technical corpus
used in our implementation includes the reference documentations
of JDK 8 [10] and Python 3.6 [13]. For example, “ACM”, “App”, and
“number values” are eliminated using this rule.

freau(t TNy(t)

' _ freqe(t) TN,

Generality(t) = m T TN4(t) @
Na

Second, for each term that includes an acronym, add the acronym
into candidate terms if it is not included. For example, “AIS data” is
a candidate term, thus “AIS” (which means automatic identification
system) is also added as a candidate term.

3.4 Alias Merging

The purpose of this step is to identify the aliases of the same con-
cept from the candidate terms and merge them together to form a
concept. This step handles two kinds of concept aliases that widely
exist in technical documents, i.e., morphological synonym and ab-
breviation. We first lemmatize all the candidate terms, then identify
and merge morphological synonyms, and finally identify and merge
abbreviations.

3.4.1 ldentification and Merging of Morphological Synonyms. Typ-
ical morphological synonyms in technical documents include:

1) words or phrases that are only different in cases or singu-
lar/plural forms, e.g., “Deeplearning4]” and “Deeplearning4;”, “RNN”
and “RNNs”;

A Learning-Based Approach for Automatic Construction of Domain Glossary from Source Code and Documentation

2) words or phrases that have different spelling or misspelling,
e.g., “Deeplearning4]” and “Deeplearinng4]”;

3) words or phrases that use hyphens in different ways, e.g.,
“t-SNE” and “tSNE”.

The first type of morphological synonyms can be directly iden-
tified after lemmatization. For the other two types, we use edit
distance to determine whether two words or phrases are morpho-
logical synonyms. In particular, we use Damerau-Levenshtein dis-
tance (DL distance) [28] to measure the similarity of two words or
phrases. The DL distance is the minimum number of operations
(insert, delete, or substitute a single character, or transpose two
adjacent characters) required to convert one word or phrase into
the other. Considering words or phrases of different lengths we
also calculate the relative distance between two words or phrases
s1 and sy as the following equation, where Distance(s1, s2) is the
DL distance of s; and s, length(s) is the length of a string s.

Distance(s1, s2)

@)

RDistance(s1, s2) = max(length(sy), length(sz))

For example, “Deeplearinng4]” can be converted into “Deeplearn-
ing4]” by a transposition operation of “i” and “n”, thus the DL dis-
tance of these two words is 1; similarly the DL distance of “RNN”
and “NN” is also 1. These two pairs of words have the same DL
distance, but the relative distance of “RNN” and “NN” (1/3) is much
bigger than that of “Deeplearinng4]” and “Deeplearning4]” (1/14).
For two words or phrases, if both of their DL distance and relative
DL distance are lower than predefined thresholds (3, 1/4 respectively
in our implementation), we regard them as a pair of morphological
synonyms. The thresholds are chosen based on trail selection of
morphological synonyms: we first fix the DL distance threshold to 2
and experimentally search for an optimal threshold for relative DL
distance; we then search for an optimal threshold for DL distance
by fixing the relative DL distance threshold.

Based on the identified morphological synonyms, we construct
alias sets of domain concepts by calculating transitive closures
based on morphological synonyms, i.e., iteratively merging mor-
phological synonyms together. For any candidate term that has no
morphological synonyms, we construct an alias set that includes
only the term itself.

3.4.2 Identification and Merging of Abbreviation Relationships. Typ-
ical abbreviation relationships in technical documents include:

1) a word is the acronym of a phrase, e.g., “NN” and “neural
network”;

2) a word is the prefix of another one, e.g., “net” and “network”;

3) two phrases satisfy one of the above two relationships after
eliminating their common head or tail words, e.g., “neural net” and
“neural network”.

Any two words or phrases that satisfy one of the above three
conditions are treated as a candidate abbreviation relationship. Thus
we can further merge the alias sets based on the identified candidate
abbreviation relationships. A difficulty here is that a candidate term
may have abbreviation relationships with multiple other candidate
terms, but it is usually an abbreviation of only one other candidate
term. For example, “RNN” is a candidate abbreviation for both
“Recurrent Neural Network” and “Recursive Neural Network”, but
it is usually the abbreviation of the former in deep learning.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 1: Hearst Patterns

C1 such as Cy Cy “isa” C1
such Cq as Cy Cy “isa” Cq
Cy[,] or other Cy Cy “isa” Cq
Cy[,] and other Cy Cy “isa” Cq
C1[,] including C Cy “isa” Cq
C1[,] especially Co Cy “isa” Cq

Therefore, we need to determine only one full name for an ab-
breviation in alias merging. For an alias set AS that has candidate
abbreviation relationships with a set of other alias sets ASSet, we
determine an only alias set in ASSet as the full name of AS based
on context similarity in the following way. We calculate the context
similarity between AS and each alias set in ASSet as the cosine
similarity of their vectors. The vector of an alias set is obtained by
averaging the vectors of all the sentences that include a candidate
term from the alias set, while the vector of a sentence is obtained
by averaging the pretrained vectors of all the words in the sentence.
Based on the context similarities, we select an alias set from ASSet
that has the highest context similarity with AS as the full name of
AS.

Based on the finally determined abbreviation relationships, we
iteratively merge the alias sets that have abbreviation relationships
together. After alias merging, each of the alias set is treated as a
domain concept with all the candidate terms in the set as its aliases.
For example, we can obtain the following domain concepts and
their alias: “RNN” (“RNNs”, “Recurrent Neural Networks”, “Rnn”,
“recurrent neural network"", “recurrent neural networks”, “rnn”);
“neural network” (“NN”, “neural net”, “Neural Net”, “Neural Net-

» G«

work”, “Neural Networks”, “Neural net”, “Neural network”, “Neural

» «

networks”, “neural nets”, “neural networks”).

3.5 Relation Identification

Relations between the extracted domain concepts are often implied
in specific sentence patterns in the documents and structural rela-
tions between code elements. Based on the document and code anal-
ysis, we identify “is a”, “has a”, and “related to” relations between
the extracted concepts. For two concepts C; and Cy, we identify “is
a” and “has a” relations between them from the following aspects.

First, identify “is a” relations from the sentences that mention
C1 and Cy based on Hearst Patterns [33], which are widely used
in the automatic acquisition of hyponymy lexical relations from
unrestricted text. The patterns used in our current implementation
are shown in Table 1, where C; and Cy can be any alias of the
corresponding concepts.

Second, identify “is a” and “has a” relations based on the struc-
tural relations between packages and classes. For two packages
or classes E1 and E; whose names are the aliases of C; and Cy
respectively:

1) if E; contains E; or aggregates E; as a property, add a “has a”
relation from Cy to Cy;

2) if E1 inherits E5, add an “is a” relation from C; to Cs.

Third, identify “is a” and “has a” relations based on prefix/suffix
relations between concept aliases:

1) if an alias of Cy is the prefix of an alias of Cy, add a “has a”
relation from C;q to Cy;

2) if an alias of C; is the suffix of an alias of Cz, add an “is a”
relation from C; to Cy;

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

To provide richer concept relations, we further identify “related
to” relations between the extracted concepts, which are weaker
than “is a” and “has a” relations. The identification of “related
to” relations is based on the similarity between two concepts: if
the similarity between two concepts is higher than a predefined
threshold, add a bidirectional “related to” relation between them.
The context similarity is calculated as the following equation, which
combines the lexical similarity (Sim;.,) and the context similarity
(Simcontext) of two concepts (w; and wy are two weights satisfying
wi + wp = 1).

Sim(cy, c2) = w1 X Simyex(c1, c2) + Wz X Simcontext(c1,cz) (3)

The lexical similarity of ¢; and c; is the Jaccard similarity [34] be-
tween the token sets of their aliases (i.e., Token(c1) and Token(cy)).

|Token(cy) N Token(cz)| @)
|Token(ct) U Token(cy)|

The context similarity of ¢; and c3 is calculated in a similar way
to the context similarity used in alias merging: generate a vector
for each concept by averaging the vectors of all the sentences that
mention the concept, then calculate the cosine similarity between
concept vectors. In our implementation, the similarity threshold is
set to 0.5, and w; and wy are set to 0.25 and 0.75 respectively. The
threshold and weights are determined based on trail identification
of “related to” relations: we first fix the threshold to 0.5 and experi-
mentally search for an optimal value for wy (wy = 1 — wy); we then
search for an optimal threshold by fixing wy.

Some examples of concept relations extracted from different
aspects are as follows.

Simjy(c1,¢2) =

e {SGD, is a, optimizer} extracted from the sentence “torch.optim:

Contains optimizers such as SGD.” based on Hearst Patterns;

e {NN, has a, Activation Layer} extracted based on the pack-
age containment relation between org.deeplearning4j.nn and
org.deeplearning4j.nn.layers.ActivationLayer;

o {RNN, has a, RNN Layer} and {recurrent neural network, is a,
neural network} extracted based on the prefix/suffix relations
between concept names;

o {L1, related to, Regularizer} extracted based on context simi-
larity of concepts.

Note that some “related to” relations may be “is a” or “has a”
relations. For example, L1 is a common method for regularization
to avoid overfitting in machine learning, but only a “related to”
relation is extracted for them because there lack supports from
sentences and code elements for the “is a” relation between them.
There may be more than one relation between two concepts. For
example, there are both “is a” and “has a” relations between “RNN”
and “neural network”.

3.6 Explanation Extraction

Concept extraction provides for each extracted domain concept
a list of sentences that mention the concept. The purpose of ex-
planation extraction is to select for each domain concept a set of
sentences that can help users to understand the concept. These
sentences usually can be classified into the following categories.
e Concept Definition: provide definition for a concept and
related techniques, for example taxonomy, explanation of
the meaning;

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang

e Technical Comment: comment on the characteristics of
a concept and related techniques, for example benefits and
drawbacks, comparisons with other techniques;

e Usage Guidance: suggest the proper way to use a concept
and related techniques, for example applicable scenarios,
guidance on related settings, common problem solutions.

We need to filter out sentences that mention a concept but are
useless for the understanding of the concept. These sentences may
be low-quality sentences that are incomplete or sentences talking
about low-level implementation (e.g., using the concepts to explain
the functionalities of code elements). We treat all the sentences
that mention a domain concept as the candidate sentences for the
concept and use the following heuristic rules to filter out useless
sentences. Candidate sentences that satisfy any of the rules are
filtered out.

¢ Incomplete Sentences: the sentence has no subject or pred-
icate, or has incomplete punctuations (e.g., the right paren-
thesis is missing);

e Code Elements: the sentence includes code elements;

e Question: the sentence is a question;

e Subordinate Clause: the sentence mentions the concept in
its subordinate clauses.

For example, for the concept “Activation Layer” the following
two sentences are selected as its explanation sentences: 1) “Acti-
vation layer is a simple layer that applies the specified activation
function to the input activations.”; 2) “Activation Layer Used to
apply activation on input and corresponding derivative on epsilon.”.
While the following two sentences are filtered out: 1) “Imports an
Activation layer from Keras.”; 2) “Advanced Activation Layers.”.

4 EMPIRICAL STUDY

We conduct an empirical study with two technical domains (deep
learning and Hadoop). Based on the results, we evaluate the effec-
tiveness of our approach for domain concept extraction and the
usefulness of the extracted domain concepts for software develop-
ment tasks. All the data and results of the study have been included
in our replication package [15].

4.1 Study Design

The two subject domains that we choose for the study represent
two kinds of technical domains. Deep learning domain includes
software libraries that are written in different languages and pro-
vide similar functionalities for the development of deep learning
applications. Hadoop domain is a software ecosystem that consists
of interdependent software systems.

The subject projects we choose for the deep learning domain
are three popular deep learning libraries: Deeplearning4j 1.0.0-
beta3 [2], Tensorflow 1.12 [18], PyTorch 1.0.0 [14]. Among them,
Deeplearning4j is written in Java, Tensorflow and PyTorch are
written in Python.

The subject projects we choose for the Hadoop domain are
Hadoop 2.9.2 [6], HBase 2.1.0 [7], Hive 2.3.4 [8]. Hadoop is a dis-
tributed data storage and processing framework based on the MapRe-
duce model. HBase is a distributed database that runs on top of
HDFS (Hadoop Distributed File System) and provides Bigtable-like
capabilities for Hadoop. Hive provides a SQL-like interface to query

A Learning-Based Approach for Automatic Construction of Domain Glossary from Source Code and Documentation

Back
s r Propagation Seq2Seq @
RELATED TO
A N RELATED TO

1s HAS

HAS A"’ Attention

RELATED T6 Mechanism
ISA da

IS A IS A
RELATED TO
HAS A Attention
Cell

Figure 2: Concepts and Relations Extracted for Deep Learn-
ing Domain

&)

data stored in various databases and file systems that integrate with
Hadoop. All these three projects are written in Java.

All these six projects are open source. We crawl the source code
of these projects and the documents available at their official web-
sites. The documents include official project introductions, user
guides/manuals, tutorials, API references. For each of the two do-
mains, we use our approach to extract domain concepts, concept
relations, and explanation sentences.

Based on the results, we design a series of experiments to answer
the following research questions.

e RQ1: How accurate are the extracted domain concepts, re-
lations, and explanations? Can the approach outperform
existing approaches for domain glossary extraction?

e RQ2: How does the extracted domain glossary fuse the
knowledge from different projects and documents? How
does the extracted concepts complement general knowledge
base such as WikiPedia?

e RQ3: Can the extracted domain glossary help developers to
obtain the required knowledge?

4.2 Basic Results

For the deep learning domain, we identify 471 seed terms and 6,645
additional terms in extended term extraction. These candidate terms
are finally transferred into 5,382 concepts after alias merging. These
concepts have 7,116 aliases in total and each concept has 1 to 22
aliases (1.32 on average). For these concepts 16,962 relations are
extracted, including 119 “is a” relations, 709 “has a” relations, 16,134
“related to” relations, and each concept has 1 to 115 relations (6.30
on average). For these concepts 1,689 explanation sentences are
extracted and each concept has 0 to 69 sentences (0.31 on average).
For the Hadoop domain, we identify 202 seed terms and 2,537
additional terms in extended term extraction. These candidate terms
are finally transferred into 2,069 concepts after alias merging. These
concepts have 2,739 aliases in total and each concept has 1 to 12
aliases (1.32 on average). For these concepts 6,815 relations are
extracted, including 135 “is a” relations, 479 “has a” relations, 6,201
“related to” relations, and each concept has 1 to 150 relations (6.59
on average). For these concepts 1,311 explanation sentences are
extracted and each concept has 0 to 68 sentences (0.63 on average).
A snippet of the concepts and relations extracted for deep learn-
ing domain is shown in Figure 2. This snippet explains the relation-
ships between a set of deep learning concepts such as NN, RNN,
CNN, LSTM, LSTM Cell, RNN Cell, Seq2Seq. The aliases and expla-
nation sentences of a part of the concepts are shown in Table 2.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 2: Aliases and Explanations of Concepts in Figure 2

Concept Alias Explanation
NN Neural Network, | Neural networks can find complex relationships between
Neural Net features and the label.

RNN Recurrent Neu- | Recurrent neural networks (RNN’s) are used when the input
ral Network is sequential in nature.
CNN Convolutional In practice, convolutional neural networks (CNN’s) are bet-

Neural Network ter suited for image classification tasks.

Seq2Seq - Sequence to Sequence network, or seq2seq network, or En-
coder Decoder network, is a model consisting of two RNNs
called the encoder and decoder.

Back Backpropagation, | Backpropagation will compute the gradients automatically

Propaga- Backprop for us.

tion

LSTM Long Short- | A LSTM is well suited for this type of problem due to the

Term Memory sequential nature of the data.
RNN Cell - A fused RNN cell represents the entire RNN expanded over

the time dimension.

4.3 Accuracy (RQ1)

To answer the question, we evaluate the accuracy of the key steps
of our approach (i.e., term extraction, alias merging, relation iden-
tification, explanation extraction) separately for each of the two
domains. As the numbers of terms, concepts, relations, and sen-
tences are large, we adopt a sampling method [48] to ensure that
the estimated population is in a certain confidence interval at a
certain confidence level. According to the sampling method the
minimum number of data instances to be examined can be cal-
culated by the formula MIN = no/(1 + (ng — 1)/populationsize).
The variable ng in the formula can be calculated by the formula
no = (Z% x 0.25)/e?, where Z is the z-score of the desired confi-
dence level and e is the desired error margin. For each step, we
randomly select MIN samples for the error margin e = 0.05 at 95%
confidence level: for term extraction we examine the accuracy of
candidate terms, i.e., whether the sampled terms represent domain
specific concepts; for alias merging we examine the accuracy of
alias relationships, i.e., whether the two aliases in the sampled alias
pairs represent the same concepts; for relation identification we
examine the accuracy of concept relations, i.e., whether the two
concepts in the sampled relations have the corresponding relations;
for explanation extraction we examine the accuracy of explanation
sentences, i.e., whether the sampled sentences provide useful ex-
planations or guidance for the corresponding concepts. We invite
three master students who are experts in the two domains (with 3
years’ experience) to examine the accuracy. For each examination
two experts independently make the decision based on both their
own knowledge and online resources of the domains. When there
is disagreement on a decision, the third expert gives an additional
judgement.

Then we compare our approach with a state-of-the-art approach
for documentation based domain glossary extraction by Arora et
al. [22]. Arora et al’s approach extracts glossary terms and their
related terms (i.e., the terms that belong to the same categories),
but does not identify concept aliases or relations. Therefore, we can
only compare the accuracy of the extraction of glossary terms with
the approach. For each target domain we use the same sampling
method to randomly select MIN sentences from the corpus of tech-
nical documents and ask the experts to annotate the glossary terms
that are included in these sentences. For each sentence two experts
independently identify the glossary terms in it and their agreement
on each identified term is checked. When there is disagreement on
an identified term, the third expert gives an additional judgement.
These identified terms are used as the golden set. We implement

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 3: Accuracy of Key Steps

Step Deep Learning Hadoop
Agreement | Accuracy | Agreement | Accuracy
Term Extraction 0.773 0.747 0.755 0.771
Alias Merging 0.943 0.961 0.940 0.956
Relation Identification 0.807 0.753 0.698 0.828
Explanation Extraction 0.729 0.807 0.831 0.802

Arora et al’s approach and use the implementation to extract glos-
sary terms from the corpus of each domain. We then identify the
extracted terms that are included in the sampled sentences and
treat these terms as the result set of the approach. The result set
of our approach is produced in a similar way. Based on the result
sets of the two approaches and the golden set, we calculate the
precision, recall, and F1-measure (the harmonic mean of precision
and recall) of glossary term extraction for the two approaches.

In the above process the agreement rate is always calculated
between the first two experts before resolving their disagreements
together with the third one.

According to the sampling method, we select 384 samples for
the accuracy evaluation of each step in each domain. The results of
the evaluation are shown in Table 3. For each step in each domain
we provide the agreement rate of the human annotations and the
accuracy.

It can be seen that our approach achieves high accuracy in term
extraction (0.747 and 0.771), alias merging (0.961 and 0.956), relation
identification (0.753 and 0.828), and explanation extraction (0.807
and 0.802). For term extraction, the falsely extracted terms include:
non-concept phrases, e.g., “network learn” (deep learning) and “ta-
ble exists (Hadoop); concepts that are not relevant to the domain,
e.g., “Google Cloud” (deep learning), “Webapp” (Hadoop); concepts
with meaningless qualifiers, e.g., “second tensors” (deep learning),
“given rows” (Hadoop). For alias merging, the falsely identified alias
relationships include: similar terms with different meanings, e.g.,
“opencl” and “opencv” (deep learning); falsely merged abbreviation
and full name, e.g., “RR” and “random row” (Hadoop, the right full
name is “Record Reader”). For relation identification, the falsely
extracted concept relations include: false relations of false concepts,
e.g., {contrib, has a, Early Stopping} (deep learning, “contrib” is
not a term); false “related to” relations between lexically similar
terms, e.g., {specified nodes, related to, specified metric} (Hadoop,
the two terms are lexically similar but not relevant). For explanation
extraction, the falsely extracted sentences do not provide useful
explanations or guidance, e.g., the sentence “The reparameterized
sample therefore becomes differentiable”” for “reparameterized sam-
ple” (deep learning).

According to the sampling method, we select 384 sentences from
each domain for the comparison with the approach in [22]. The
agreement rates of the human annotations are 0.776 and 0.805 in
the deep learning domain and the Hadoop domain respectively. The
results of the comparison are shown in Table 4. For each approach
we provide the precision, recall, and F1-measure of the extraction
of glossary terms in each domain.

It can be seen that in deep learning domain our approach sig-
nificantly outperforms Arora et al’s approach in terms of both
precision (by 0.498) and recall (by 0.117). Their approach is based
on the identification of noun phrases, thus may extract many irrel-
evant words or phrases, especially acronyms, e,g., “specified value”,
“AND” and “IT” in deep learning domain, and “Hadoop example

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang

Table 4: Comparison with Arora et al’s Approach [22]

Deep Learning Hadoop
Method Precision | Recall F1 Precision | Recall F1
Our Approach 0.698 0.668 0.683 0.642 0.326 0.432
Arora et al’s Approach [22] 0.200 0.551 0.293 0.210 0.606 0.312

code”, “ONLY”, “OR” in Hadoop domain. In Hadoop domain our
approach outperforms Arora et al’s approach in terms of precision
(by 0.432) and F1-measure (by 0.120), but is inferior to their ap-
proach in term of recall (by 0.280). We find that the reason why
our approach achieves a much lower recall in Hadoop lies in the
difference between the two domains. In our study, deep learning
domain consists of three alternative libraries with similar function-
alities and these projects share many glossary terms; while Hadoop
domain consists of three interdependent software systems that pro-
vide different functionalities and these projects share much less
glossary terms. Our approach relies on the rule of shared terms in
different projects to identify the training data for term extraction,
so it can identify much less terms for training in Hadoop domain
and thus extract much less glossary terms finally. To conclude, our
approach outperforms Arora et al’s approach in general; and it
performs better when the target domain consists of projects that
provide similar functionalities.

4.4 Knowledge Fusion (RQ2)

Our approach harvests glossary terms, concepts, and explanations
from different projects and documents. To evaluate how our ap-
proach fuses the knowledge from different projects and documents,
we analyze the distribution of the extracted terms, concepts, and ex-
planations among different projects and documents. Table 5 shows
the statistics for the knowledge fusion of different projects, i.e., how
much of the terms, concepts, and explanation sentences are cov-
ered by different documents of different projects. For deep learning
domain, if one reads a single document of a specific project she
can learn at most 58.0% terms, 53.7% concepts, and 29.5% expla-
nation sentences. For Hadoop domain, the ratios are 45.7%, 40.9%,
and 40.6% respectively. From the analysis, it can be seen that it is
necessary to fuse the knowledge from different documents of dif-
ferent projects to have a comprehensive understanding of domain
specific concepts. For example, the abbreviation “GAN” appears in
the documents of TensorFlow, but its full name “Generative Ad-
versarial Networks” can only be found in Deeplearning4j and its
explanations can only be found in PyTorch.

We further analyze the complementarity with Wikipedia based
on the 384 terms sampled in each domain for the evaluation of
term extraction (see Section 4.3). For each term we manually ex-
amine Wikipedia to check whether it is included with the same
meaning. Note that as Wikipedia may include the same terms with
different meanings this examination can only be performed man-
ually. Table 6 shows the results of the complementarity analysis,
including the number of glossary terms that are confirmed, the
number of glossary terms that are included in Wikipedia and the
ratio. It can be seen that only 23.0% and 28.0% of the glossary terms
extracted by our approach are included in Wikipedia, indicating a
high complementarity with Wikipedia. Wikipedia includes some
domain specific terms, e.g., “RNN” and “LSTM” in deep learning
domain, but misses more domain specific terms. For example, our
approach identifies “computation graph” as a term in deep learning
domain and provides useful explanations, but it is not included

A Learning-Based Approach for Automatic Construction of Domain Glossary from Source Code and Documentation

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 5: Knowledge Fusion of Different Documents and Projects

Deep Learning Hadoop
Deeplearning4j TensorFlow PyTorch Hadoop Hbase Hive
Total - Total - -
APIRef. | Guide | APIRef. Guide | APIRef. | Guide API Ref. Guide | APIRef. | Guide | APIRef Guide
Term 7116 | 409% | 263% | 580% | 291% | 27.0% | 306% | 2739 | 327% | 457% | 345% | 39.0% | 33.8% | 405%
Concept 5382 | 353% | 211% | 537% | 241% | 219% | 255% | 2069 | 282% | 409% | 304% | 33.6% | 295% | 33.6%
Explanation | 1689 | 162% | 169% | 295% | 17.7% 3.2% 114% | 1311 | 102% | 40.6% 9.0% 16.9% 9.2% 14.1%
Table 6: Complementarity with Wikipedia .
P Y P Table 7: Developer Questions Selected from Stack Overflow
Domain #Term | #In Wekipedia | Ratio
Deep Learning 287 66 23.0% Question D Title
Hadoop 296 83 28.0% Q1 17837871 How to set layer-wise learning rate in Tensorflow ?
. . i N i Q2 38714959 Understanding Keras LSTMs
in Wikipedia. Therefore, the concepts, relations, and explanations o3 35687678 | UsIng a pre-trained word embedding (word2vec or Glove)
extracted by our approach can well complement general knowledge in TensorFlow _ _ _
. . " 44747343 Keras input explanation: input_shape, units, batch_size,
base such as WikiPedia. Q dim, etc
05 4151128 What are the differences between numpy arrays and matri-
4 5 Usefulness (RQ3) ces? Which one should I use?
* Q6 5751114 Nearest neighbors in high-dimensional data ?
We design an experiment to investigate whether the extracted do- Q7 13610074 | 18 there a rule-of-thumb for how to divide a dataset into
training and validation sets ?
main glossary can help to answer real-world developer queries. 08 2620343 | What is machine learning 7
. : Q9 17837871 How to copy file from HDFS to the local file system
Given a query, we use a document sea?ch engine to search the o0 2755157 | Wha is haoop namenode command used for
corpus of documents of the target domain. Then we perform the 011 28146411 | What is the benefit of using CDH (cloudera)?
document search again using query expansion based on the ex- Q12 assa091 | 10 hadoopwhat is the difference and relationship between
jobtracker tasktracker?

tracted domain glossary and compare the performance before and
after the query expansion.

In particular, we use Elasticsearch 6.0.6 [3] as the document
search engine. The query expansion in implemented in the follow-
ing way. We identify the domain concepts that are mentioned in the
query. Assume C is the set of concepts that are mentioned in the
initial query and T is the set of the other tokens in the initial query,
then the expanded query consists of: 1) all the tokens in T, their
weights are set to 0.5; 2) all the concepts that have “is a” or “has
a” relations with any concept in C, their weights are set to 0.5; 3)
the aliases of the concepts in C (each concept with one alias), their
weights are set to 1. We try different combinations of aliases for the
concepts in C and for each combination the expanded query is used
to search the corpus of documents of the target domain with Elastic-
search. According to the suggestion in [31], we replace the aliases
of up to three concepts each time (while the other concepts use the
initial terms) to avoid combinatorial explosion and the distortion
of results. Each time we collect the top 10 ranked sentences and
record the score (given by Elasticsearch) of each sentence. After all
the combinations for the query are executed we sum up the scores
of each sentence to produce the final ranking of sentences.

We select 12 questions from the top 100 voted Stack Overflow
questions with the tag “deep learning” or “Hadoop”. These questions
are related to domain concepts and can be answered by the docu-
ments. The selected sentences are shown in Table 7, among which
Q1-Q8 are about deep learning and Q9-Q12 are about Hadoop. For
each question we use its title as a query and calculate three metrics
for the query results: precision (P), which indicates the proportion
of relevant sentences in the top 10 ranked sentences; average preci-
sion (AP), the mean of the precision scores obtained after all the
relevant results are retrieved (with relevant results that are not
retrieved receiving a precision score of 0); reciprocal rank (RR),
which is the reciprocal of the position of the first correct result.

Table 8 shows the results of the evaluation of query expansion,
which compare the performance before and after query expansion
for each question. It can be seen that supported with the domain
glossary the query expansion significantly improves the perfor-
mance of document searching for both deep learning and Hadoop.

Table 8: Performance of Query Expansion

. . Before Extension After Extension

Question Domain 5 AP RR 5 AP R
Q1 0.80 0.80 1.00 0.90 0.88 1.00
Q2 0.30 0.51 1.00 0.70 0.83 1.00
Q3 0.50 0.70 1.00 0.70 0.69 0.50
Q4 Deep Learning 0.80 0.78 1.00 0.60 0.57 0.30
Q5 0.30 0.46 0.50 0.60 0.49 0.25
Q6 0.80 0.78 1.00 0.90 1.00 1.00
Q7 0.30 0.24 0.20 0.50 0.73 1.00
Q8 0.40 0.35 0.33 0.50 0.93 1.00
Avg. 0.53 0.58 0.75 0.68 0.76 0.76

Q9 0.80 0.94 1.00 0.50 0.62 1.00
Q10 Hadoop 0.20 0.23 0.25 0.50 0.61 1.00
Q11 0.10 0.33 0.33 0.50 0.70 1.00
Q12 0.30 0.22 0.14 0.70 0.84 1.00
Avg. 0.35 0.43 0.43 0.55 0.69 1.00

The query expansion performs well for Q2, Q7, Q8, Q10, Q11, and
Q12. We can see these queries are quite relevant to the compre-
hension of concepts (e.g., training, validation sets). In contrast, the
query expansion is not so effective for Q3 and Q9. Both these two
queries ask concrete technical solutions with the corresponding
software libraries and systems (e.g., TensorFlow). One reason for
this difference may be that concrete technical solutions are more
relevant to specific projects (e.g., TensorFlow) and basic techniques
(e.g., file copy) rather than the overall domain and high-level con-
cepts. This inspires us to consider to integrate the domain glossaries
with more general background knowledge bases (e.g., those for com-
puting and Java programming) to provide better support for the
acquisition of software knowledge.

4.6 Threats to Validity

A major threat to the internal validity is the subjective judgements
involved in the data annotation and result assessment of the ex-
periments. Although the final results are based on the agreement
of different experts, some of the judgements may be incorrect and
thus influence the evaluation results.

A major threat to the external validity is the limited number of
target domains, projects, and documents used in the study. Different
domains, projects, and documents may have different characteris-
tics in their source code and documents (e.g., styles and formats)
and the involved concepts (e.g., naming styles and usage modes in

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

code/text). The approach may be less effective for other domains
or when considering more projects and documents of the domains.
Another major threat to the external validity is the limited number
of questions used in the usefulness evaluation. Different questions
may involve different concepts and thus lead to different effects of
improvement.

5 DISCUSSION

Researchers have advocated for a new vision for satisfying the infor-
mation needs of developers, which is called On-Demand Developer
Documentation (OD3) [47]. An OD3 system would automatically
generate high-quality response for a user query based on a combi-
nation of knowledge extracted from a collection of artifacts such
as source code, documentation, and Q&A posts. This capability
needs to be built around the extraction and fusion of software de-
velopment knowledge from a variety of artifacts. And a domain
knowledge graph that provides domain specific concepts and their
relationships is a key for the knowledge extraction and fusion. Ac-
tually we have seen the application of domain knowledge graph
for the purpose of dynamic documentation generation [42] and
improving API Caveats Accessibility [37].

The domain glossary constructed by our approach can be seen as
an initial attempt for the construction of domain knowledge graph.
Besides technical domains like deep learning and Hadoop, our ap-
proach can also be applied on business domains like e-learning
and office given the required source code and documentation. The
domain glossary extracted by our approach complement general
knowledge graphs such as Wikidata [19] by providing domain
specific concepts and relationships. It is useful that the domain glos-
saries of specific domains are integrated with general knowledge
graphs (e.g., Wikidata) and the domain glossaries of general techni-
cal domains (e.g., Java and Python) to provide more comprehensive
knowledge graphs for software engineering tasks.

Our approach can be improved from several aspects. First, other
artifacts such as Q&A posts, issues, and commit messages can be
added into the data sources of concept extraction. Second, more
rules and algorithms can be used for the identification of seed
terms. Third, the extracted relationships can be further refined by
employing more advanced text processing and knowledge extrac-
tion techniques. This refinement means not only identifying more
“is a” and “has a” relations, but also refining the general “related
to” relations into concrete relations. Fourth, the extracted domain
specific concepts can be connected with more general concepts
(e.g., concepts about programming languages and computing) in
background knowledge by various relationships.

6 RELATED WORK

Term extraction is a long studied topic in many domains such
as knowledge engineering and information retrieval. Existing ap-
proaches use linguistic, statistical, and hybrid techniques to identify
glossary terms from text corpus [23, 24, 35, 38, 41]. In software
engineering area, researchers investigate automatic extraction of
domain glossaries from requirements documentations to mitigate
imprecision and ambiguity [22]. Anurag et al. [30] propose a hybrid
approach for the extraction of glossary terms from natural lan-
guage requirements. Menard and Ratte [40] propose a text mining

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang

approach to extract domain-relevant terms from internal business
documents. Arora et al. [22] propose a linguistic approach to ex-
tract glossary terms and their related terms from requirements
documents. These approaches rely on linguistic heuristics or term-
frequency-based statistics to identify domain specific terms, thus
the accuracy is often low. Moreover, these approach do not extract
concept aliases or relations.

Some researches identify and extract software specific entities
such as API elements and programming actions from software
engineering text corpus. The researches on API recognition iden-
tify API elements mentioned in text corpus [53, 58]. Based on the
recognition of API elements, we can further link APIs with other
relevant artifacts. Treude and Robillard [51] propose an approach
for automatically augmenting API documentation with insight sen-
tences from Stack Overflow. Dagenais and Robillard [27] propose
an approach for recovering traceability links between an API and
its learning resources. Treude et al. [52] developed a technique
for automatically extracting tasks from software documentation
to help developers navigate documentation. The software specific
entities extracted by these approaches complement the glossary
terms extracted by our approach.

Some researches [21, 25] extract domain concepts and relations
from source code. These approaches can only identify concepts
from source code identifiers and cannot harvest knowledge from
software documentation.

Recently, some researchers investigate learning based approaches
for the identification of software specific concepts and relations
from text content. Ye et al. [59] propose a learning based named
entity recognition approach on software engineering social content
(e.g., Stack Overflow). Zhao et al. [60] propose a learning based
approach for discovering domain specific concepts and their rela-
tion triples from Stack Overflow posts. Chen et al. [26] propose
an automatic approach for extracting software-specific terms and
commonly used morphological forms from Stack Overflow posts.
These approaches are customized for Stack Overflow and rely on
Stack Overflow specific features such as post tags and timestamps.
Moreover, Ye et al.’s approach [59] and Zhao et al’s approach [60]
rely on human labelled data for learning.

7 CONCLUSION

In this paper, we have proposed a learning-based approach for
automatic construction of domain glossary from source code and
software documentation. We have conducted an empirical study
with the deep learning domain and the Hadoop domain. The study
confirms the accuracy of the extracted domain glossary and its use-
fulness for the fusion and acquisition of knowledge from different
documents of different projects. In the future, we plan to improve
the approach by refining the extracted relationships and integrating
with general knowledge graphs and apply the constructed domain
glossaries to more software engineering tasks.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2018YFB1004803.

A Learning-Based Approach for Automatic Construction of Domain Glossary from Source Code and Documentation

REFERENCES

[20]
[21]

[22]

[23

[24]

[25]

[26

[27

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

2019. BeautifulSoup. Retrieved February 20, 2019 from https://www.crummy.
com/software/BeautifulSoup

2019. Deeplearning4j. Retrieved February 20, 2019 from http://deeplearning4j.org
2019. Elasticsearch. Retrieved February 20, 2019 from https://www.elastic.co
2019. gensim. Retrieved February 20, 2019 from https://radimrehurek.com/gensim
2019. GloVe. Retrieved February 20, 2019 from https://nlp.stanford.edu/projects/
glove

2019. Hadoop. Retrieved February 20, 2019 from https://hadoop.apache.org
2019. HBase. Retrieved February 20, 2019 from https://github.com/apache/hbase
2019. Hive. Retrieved February 20, 2019 from https://github.com/apache/hive
2019. javalang. Retrieved February 20, 2019 from https://github.com/c2nes/
javalang

2019. JDK 8. Retrieved February 20, 2019 from https://docs.oracle.com/javase/8
2019. LSTM-CRF. Retrieved February 20, 2019 from https://github.com/
guillaumegenthial/tf_ner

2019. NLTK. Retrieved February 20, 2019 from http://www.nltk.org

2019. Python 3.6. Retrieved February 20, 2019 from https://docs.python.org/3.6
2019. PyTorch. Retrieved February 20, 2019 from https://pytorch.org

2019. Replication Package. Retrieved June 17, 2019 from https://fudanselab.github.
io/Research-ESEC-FSE2019-DomainGlossary/

2019. Scrapy. Retrieved February 20, 2019 from https://scrapy.org

2019. spaCy. Retrieved February 20, 2019 from https://spacy.io/

2019. Tensorflow. Retrieved February 20, 2019 from https://www.tensorflow.org
2019. Wikidata. Retrieved February 20, 2019 from https://www.wikidata.org
2019. WordNet. Retrieved February 20, 2019 from https://wordnet.princeton.edu
Surafel Lemma Abebe and Paolo Tonella. 2015. Extraction of domain concepts
from the source code. Sci. Comput. Program. 98 (2015), 680-706.

Chetan Arora, Mehrdad Sabetzadeh, Lionel C. Briand, and Frank Zimmer. 2017.
Automated Extraction and Clustering of Requirements Glossary Terms. IEEE
Trans. Software Eng. 43, 10 (2017), 918-945.

Sophie Aubin and Thierry Hamon. 2006. Improving Term Extraction with Termi-
nological Resources. In Advances in Natural Language Processing, 5th International
Conference on NLP, FinTAL 2006, Turku, Finland, August 23-25, 2006, Proceedings.
380-387.

Didier Bourigault. 1992. Surface Grammatical Analysis For The Extraction Of
Terminological Noun Phrases. In 14th International Conference on Computational
Linguistics, COLING 1992, Nantes, France, August 23-28, 1992. 977-981.

Nuno Ramos Carvalho, José Jodo Almeida, Pedro Rangel Henriques, and Maria
Jodo Varanda Pereira. 2015. From source code identifiers to natural language
terms. Journal of Systems and Software 100 (2015), 117-128.

Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017. 450-461.

Barthélémy Dagenais and Martin P. Robillard. 2012. Recovering traceability links
between an API and its learning resources. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 47-57.

Fred Damerau. 1964. A technique for computer detection and correction of
spelling errors. Commun. ACM 7, 3 (1964), 171-176.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53-95.

Anurag Dwarakanath, Roshni R. Ramnani, and Shubhashis Sengupta. 2013. Au-
tomatic extraction of glossary terms from natural language requirements. In
21st IEEE International Requirements Engineering Conference, RE 2013, Rio de
Janeiro-R7, Brazil, July 15-19, 2013. 314-319.

Fan Fang, Bo-Wen Zhang, and Xu-Cheng Yin. 2018. Semantic Sequential Query
Expansion for Biomedical Article Search. IEEE Access 6 (2018), 45448-45457.
Jin Guo, Marek Gibiec, and Jane Cleland-Huang. 2017. Tackling the term-
mismatch problem in automated trace retrieval. Empirical Software Engineering
22,3 (2017), 1103-1142.

Marti A. Hearst. 1992. Automatic Acquisition of Hyponyms from Large Text
Corpora. In 14th International Conference on Computational Linguistics, COLING
1992, Nantes, France, August 23-28, 1992. 539-545.

Paul Jaccard. 1901. Distribution de la Flore Alpine dans le Bassin des Dranses
et dans quelques régions voisines. Bulletin de la Societe Vaudoise des Sciences
Naturelles 37 (1901), 241-72.

Leslie P. Jones, Edward W. Gassie Jr., and Sridhar Radhakrishnan. 1990. INDEX:
The statistical basis for an automatic conceptual phrase-indexing system. JASIS
41, 2 (1990), 87-97.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San
Diego California, USA, June 12-17, 2016. 260-270.

(37]

[38

[39

S
=

[41

[42

[43]

[45

[46

~
=

[48

[49

[50]

[y
by

(52

[53

(54

[57

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. 183-193.
Yutaka Matsuo and Mitsuru Ishizuka. 2004. Keyword extraction from a single
document using word co-occurrence statistical information. International Journal
on Artificial Intelligence Tools 13, 1 (2004), 157-169.

Collin McMillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu.
2013. Portfolio: Searching for relevant functions and their usages in millions of
lines of code. ACM Trans. Softw. Eng. Methodol. 22, 4 (2013), 37:1-37:30.

Pierre André Ménard and Sylvie Ratté. 2016. Concept extraction from business
documents for software engineering projects. Autom. Softw. Eng. 23, 4 (2016),
649-686.

Maria Teresa Pazienza, Marco Pennacchiotti, and Fabio Massimo Zanzotto. 2005.
Terminology Extraction: An Analysis of Linguistic and Statistical Approaches.
Knowledge Mining, S. Sirmakessis, Ed. Berlin, Germany: Springer. 255—-279
pages.

Xin Peng, Yifan Zhao, Mingwei Liu, Fengyi Zhang, Yang Liu, Xin Wang, and Zhen-
chang Xing. 2018. Automatic Generation of API Documentations for Open-Source
Projects. In IEEE Third International Workshop on Dynamic Software Documenta-
tion, DySDoc@ICSME 2018, Madrid, Spain, September 25, 2018. 7-8.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL.
1532-1543.

Mohammad Masudur Rahman, Chanchal Kumar Roy, and David Lo. 2016. RACK:
Automatic API Recommendation Using Crowdsourced Knowledge. In IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1. 349-359.
Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick
Maéder. 2018. Traceability in the wild: automatically augmenting incomplete trace
links. In Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 834-845.

Lev-Arie Ratinov and Dan Roth. 2009. Design Challenges and Misconceptions
in Named Entity Recognition. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning, CoNLL 2009, Boulder, Colorado, USA,
Fune 4-5, 2009. 147-155.

Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil A. Ernst, Marco Aurélio Gerosa, Michael W. Godfrey, Michele
Lanza, Mario Linares Vasquez, Gail C. Murphy, Laura Moreno, David C. Shepherd,
and Edmund Wong. 2017. On-demand Developer Documentation. In 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2017,
Shanghai, China, September 17-22, 2017. 479-483.

Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling.
Vol. 15. Springer Science & Business Media.

Ferdian Thung, Shaowei Wang, David Lo, and Julia L. Lawall. 2013. Automatic
recommendation of API methods from feature requests. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013. 290-300.

Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo. 2017. APIBot: ques-
tion answering bot for API documentation. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017. 153-158.

Christoph Treude and Martin P. Robillard. 2016. Augmenting API documenta-
tion with insights from stack overflow. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016.
392-403.

Christoph Treude, Martin P. Robillard, and Barthélémy Dagenais. 2015. Extracting
Development Tasks to Navigate Software Documentation. IEEE Trans. Software
Eng. 41, 6 (2015), 565-581.

Gias Uddin and Martin P. Robillard. 2017. Resolving API Mentions in Informal
Documents. CoRR abs/1709.02396 (2017). arXiv:1709.02396

Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. Improving
feature location practice with multi-faceted interactive exploration. In 35th Inter-
national Conference on Software Engineering, ICSE 13, San Francisco, CA, USA,
May 18-26, 2013. 762-771.

Wentao Wang, Arushi Gupta, Nan Niu, Li Da Xu, Jing-Ru C. Cheng, and Zhendong
Niu. 2018. Automatically Tracing Dependability Requirements via Term-Based
Relevance Feedback. IEEE Trans. Industrial Informatics 14, 1 (2018), 342-349.
Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. 2018. Enhancing Automated
Requirements Traceability by Resolving Polysemy. In 26th IEEE International
Requirements Engineering Conference, RE 2018, Banff, AB, Canada, August 20-24,
2018. 40-51.

Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: automated
generation of answer summary to developersz technical questions. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. 706-716.

https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
http://deeplearning4j.org
https://www.elastic.co
https://radimrehurek.com/gensim
https://nlp.stanford.edu/projects/glove
https://nlp.stanford.edu/projects/glove
https://hadoop.apache.org
https://github.com/apache/hbase
https://github.com/apache/hive
https://github.com/c2nes/javalang
https://github.com/c2nes/javalang
https://docs.oracle.com/javase/8
https://github.com/guillaumegenthial/tf_ner
https://github.com/guillaumegenthial/tf_ner
http://www.nltk.org
https://docs.python.org/3.6
https://pytorch.org
https://fudanselab.github.io/Research-ESEC-FSE2019-DomainGlossary/
https://fudanselab.github.io/Research-ESEC-FSE2019-DomainGlossary/
https://scrapy.org
https://spacy.io/
https://www.tensorflow.org
https://www.wikidata.org
https://wordnet.princeton.edu
http://arxiv.org/abs/1709.02396

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

[58]

[59]

Deheng Ye, Lingfeng Bao, Zhenchang Xing, and Shang-Wei Lin. 2018. APIReal:
an API recognition and linking approach for online developer forums. Empirical
Software Engineering 23, 6 (2018), 3129-3160.

Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket
Kapre. 2016. Software-Specific Named Entity Recognition in Software Engineer-
ing Social Content. In IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016

[60

Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie, and Tuo Wang

- Volume 1. 90-101.
Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya Sawada, Jing Li,
and Shang-Wei Lin. 2017. HDSKG: Harvesting domain specific knowledge graph
from content of webpages. In IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt, Austria, February
20-24, 2017. 56-67.

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Preprocessing
	3.2 Seed Term Extraction
	3.3 Extended Term Extraction
	3.4 Alias Merging
	3.5 Relation Identification
	3.6 Explanation Extraction

	4 Empirical Study
	4.1 Study Design
	4.2 Basic Results
	4.3 Accuracy (RQ1)
	4.4 Knowledge Fusion (RQ2)
	4.5 Usefulness (RQ3)
	4.6 Threats to Validity

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

