
GeneratingQuery-Specific Class API Summaries

Mingwei Liu∗
Fudan University

China

Xin Peng∗†
Fudan University

China

Andrian Marcus
The University of Texas at Dallas

USA

Zhenchang Xing
Australian National University

Australia

Wenkai Xie∗
Fudan University

China

Shuangshuang Xing∗
Fudan University

China

Yang Liu∗
Fudan University

China

ABSTRACT
Source code summaries are concise representations, in form of text
and/or code, of complex code elements and are meant to help devel-
opers gain a quick understanding that in turns help them perform
specific tasks. Generation of summaries that are task-specific is still
a challenge in the automatic code summarization field. We propose
an approach for generating on-demand, extrinsic hybrid summaries
for API classes, relevant to a programming task, formulated as a
natural language query. The summaries include the most relevant
sentences extracted from the API reference documentation and the
most relevant methods.

External evaluators assessed the summaries generated for classes
retrieved from JDK and Android libraries for several programming
tasks. The majority found that the summaries are complete, concise,
and readable. A comparison with summaries produce by three
baseline approaches revealed that the information present only in
our summaries is more relevant than the one present only in the
baselines summaries. Finally, an extrinsic evaluation study showed
that the summaries help the users evaluating the correctness of API
retrieval results, faster and more accurately.

CCS CONCEPTS
• Information systems→ Summarization; • Software and its
engineering → Documentation.

KEYWORDS
Code summarization, API, Knowledge Graph, Code retrieval

∗M. Liu, X. Peng, W. Xie, S. Xing, Y. Liu are with the School of Computer Science and
Shanghai Key Laboratory of Data Science, Fudan University, China.
†X. Peng is the corresponding author (pengxin@fudan.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338971

ACM Reference Format:
Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie,
Shuangshuang Xing, and Yang Liu. 2019. Generating Query-Specific Class
API Summaries. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3338971

1 INTRODUCTION
Automated software summarization is the process of generating
a concise representation of one or more software artifacts, that
conveys the information needed by a software stakeholder to per-
form a particular software engineering task [31]. Researchers have
proposed techniques for the summarization of many software arti-
facts including: source code, posts on question and answer forums,
bug reports and issue requests, user manuals, code and product
reviews, code changes, etc. [36] One of the goals of these summaries
is to facilitate quick understanding of the software artifacts. For
example, during code retrieval tasks, the summaries of the retrieved
code help developers decide quickly whether they are irrelevant,
or whether they require in depth analysis to establish relevancy.

Software artifacts are usually comprised of natural language text
and/or source code. The produced summaries may be textual, con-
tain source code only, or hybrid (i.e., contain both). Approaches that
generate textual summaries for textual software artifacts rely on
standard techniques from the field of automated (natural language)
text summarization [24, 25, 31, 36, 40, 41]. More challenging are the
approaches that summarize code-base and hybrid artifacts, where
standard techniques do not apply. Among these, hybrid documents
and summaries are difficult as they usually require establishing
relationships between the text and source code components.

A common trait of the automated code summarization tech-
niques is that the generated summaries are independent from the
user task (i.e., what the summary is needed for). Binkley et al. [13]
studied human written summaries for the same code, but different
tasks and concluded a person produces different summaries of the
same code, for different task. It also highlighted that summarizing
non-trivial unfamiliar code is extremely challenging and it is un-
clear what level of detail is required for a task-specific summary.
In addition, McBurney and McMillan [28] showed that there are
significant differences between source code summaries written by

120

https://doi.org/10.1145/3338906.3338971
https://doi.org/10.1145/3338906.3338971

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu

the authors of the code or by the readers (i.e., users) of the same
code. Also, human written summaries have different properties
than automatically generated summaries. A major challenge left
unaddressed by researchers is to determine what type of summary
fits best a given user task. While this paper does not solve this
problem entirely, it achieves one important step forward, by in-
troducing and evaluating a technique (named KG-APISumm) that
automatically generates source code summaries based on the user
programming task, expressed as a natural language query.

Many developer tasks are related to using certain APIs (Applica-
tion Programming Interfaces). To find the relevant APIs, developers
often resort to API documentations [15, 26, 42, 44, 48]. In this paper,
we focus on automatically generating hybrid extractive sum-
maries for classes, supporting developers in findingAPIs rel-
evant to their programming task. The summaries are generated
on-demand, in response to a user textual query, which describe
the programming task at hand. The summaries are hybrid because
they include summary sentences attached to the relevant methods
of the class being summarized. KG-APISumm is an extractive sum-
marization approach because the summary sentences are selected
from the reference documentation. The summaries are task-specific
because the extracted sentences and methods are the ones most
related to the user query. In other words, a class may have two
different summaries for two different queries.

Most existing automated code summarization techniques rely on
the summarized code artifact only for generating the summary. Rela-
tionships between code elements and other information sources are
rarely used, hence they cannot be used for creating programming
task-specific summaries. Only a few summarization techniques rely
on extracting code related information from sources external to
the summarized code element [28, 34, 35, 37, 39, 48] (see Section 5).
One problem is that information about the APIs, relevant for solv-
ing a programming task, is scattered across multiple information
sources and they relate to each other in more than one way. Our
solution to this problem is the construction of an API knowledge
graph (API KG), which represents fine-grained information about a
library, at method and sentence level. The ability to reason about
individual sentences in documentation is essential for generating
query specific and succinct summaries.

We constructed an API KG for JDK and Android and conducted
several empirical studies for the intrinsic and extrinsic evaluation
of the class API summaries, involving external evaluators. The eval-
uators found the summaries to be complete, concise, and readable.
In addition, they contain relevant information, which is missing in
summaries obtained with three baseline summarization approaches.
Finally, the summaries helped users identify APIs relevant for a
programing tasks, faster and more accurately.

2 KG-BASED CLASS API SUMMARIZATION
KG-APISumm takes as input a natural language user query Q, de-
scribing the developer task, a class C from an existing library L,
and the API knowledge graph of the library L (API KG(L)).

The API KG(L) is used to extract up to S sentences describing C’s
functionality and up to M methodsmi in C, most relevant to Q. For
eachmi KG-APISumm also includes in the summary up to S most
relevant sentences extracted from the reference documentation. M

Figure 1: Summary example with M=3methods and S=2 sen-
tences per method/class

and S are customizable by the user, which determine the maximum
size of the summaries. An example, with M=3 (i.e., up to three
methods are included) and S=2 (i.e., each method and the class are
described by two sentences) is shown in Figure 1.

For generating the summaries, KG-APISumm needs to relate
API elements to each other and to individual sentences from the
reference documentation. The API KG captures such relationships.

2.1 API KG Construction
For Constructing the APIKG(L), we extract all the the API defini-
tions and descriptions from L’s reference documentation.

The first step in building the API KG is the extraction of struc-
tural information of the APIs. The API KG is later enriched with
relationships between API elements and API descriptions. The high-
level schema of the API KG is shown in Figure 2, which contains
entities (circles) and their relationships (arrows). The API KG in-
cludes two parts, i.e., the structural knowledge (white circles) and
the descriptive knowledge (rectangles).

The structural knowledge describes the structure of the APIs
entities (e.g., API packages, classes, methods/fields) and the signa-
tures of the APIs (e.g., parameters and return values of APImethods).
It includes various API entities, as well as the containment and gen-
eralization/implementation relations between them. In addition,
each API entity has properties such as, fully qualified name, added
in version, API documentation URL, etc. The structural knowledge
also describes the parameters, return values, thrown exceptions of
methods and their types. It also includes the “seeAlso” relation be-
tween API elements, which indicates closely relevant API elements
(e.g., API methods that provide similar functionalities).

The descriptive knowledge describes the functionalities and
directives of the APIs. These descriptions are expressed as natural
language sentences andwill be further processed in theknowledge
fusion part for identifying concepts and linking them with each
other and with general software concepts.

2.1.1 Structural Knowledge Extraction. API entities and their rela-
tions in the structured knowledge are extracted from class/interface
declarations, class/interface member declarations, and method dec-
larations in the API reference documentation. We developed a web
crawler, which obtains the API reference documentation from the

121

GeneratingQuery-Specific Class API Summaries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 2: Schema of the Structural Knowledge Graph

web. We also developed a parser, based on the structure of specific
API reference documentation (e.g., JDK and Android API documen-
tations) to extract API entities and their properties and relations.

Note that parameters and return values are independent API
elements that can be shared by multiple methods. For example, two
methods may have the same return value. Methods that accept pa-
rameters or return values with the same meanings can be indirectly
connected. We determine the similarity of the parameters or return
values, of two methods by matching the names (for parameters
only), types, and the descriptions.

2.1.2 Descriptive Knowledge Extraction. We use the natural lan-
guage text descriptions of various API elements, extracted from API
reference documentation, as input for the descriptive knowledge ex-
traction. These descriptions include: package, class/interface, field,
method, method return value, and method parameter descriptions.
The extracted text descriptions are processed as follows:

• All HTML tags and separate code segments are removed.
Code elements mentioned in sentences are preserved.

• Each text description is split into sentences.
• The sentences are classified into different types.

As reported by Maalej and Robillard [26], about a half of the doc-
umentation units attached to API class members in JDK and .NET
contain information of little or no value. The purpose of sentence
classification is to exclude meaningless sentences and identify sen-
tences relevant for different types of descriptive knowledge. Based
on the findings of previous studies [26] and our analysis of the
JDK and Android API reference documentations, we define the
following sentence types, relevant for descriptive knowledge ex-
traction. [Functionality]—description of the functionality of API
entities. Example: “Object used to report key and button events”. [Di-
rective]—description about the usage of the API such as, correct or
incorrect usage situations, constraints on method parameters, situ-
ations of exception throwing. Example: “IllegalArgumentException:
if the modifiers parameter contains invalid modifiers”. [Other]—all
other situations, usually implementation details. Example: “There
are two ways to programmatically determine the version number”.

We use a back propagation (BP) neural network [21] to train a
classifier for classifying the sentences into one of the three types. To
this end, we transform the sentences into the inputs to the BP neural
network in the following way: (1) convert each sentence into a bag
of words using standard preprocessing procedure (i.e., tokenization,

stop word removal, and lemmatization); (2) generate a vector for
each sentence by averaging the vectors of words from the sentence;
and (3) useWord2vec [30] to train word vectors based on the corpus
of all the sentences from the API reference documentation.

To prepare the training data, we randomly select a subset of the
sentences and manually label each of them into one of the three
types. The details on the training and calibration of the classifier in
our implementation is presented in Section 3.1.

Finally, for each sentence of an API element that is classified as
[Functionality] or [Directive], we create a “hasFunctionality” or
“hasDirective” relation between the API element and the sentence.

2.1.3 Knowledge Fusion. We link concepts referenced in the de-
scriptions of different API elements with each other and also with
concepts from more general knowledge graphs. The these concept
relationships help determining relationships between API elements
and their relevance to user queries.

The descriptions of different API entities may refer to various
API-related concepts such as, “system service”, “download”, “system
notification”. For simplicity we will refer to these concept, which
are referred to in API descriptions, as API concepts. Identifying
these concept references can reveal semantic relationships between
API elements that share them. For example, different API classes
or methods that provide similar or related functionalities are se-
mantically related, even if they are not structurally related (e.g.,
through a direct reference). Some of the API concepts can be further
linked with generic software-related concepts (which we call sim-
ply as software concepts) from existing general knowledge graphs
such as, Wikidata. These general knowledge graphs reveal fur-
ther relationships between concepts. For example, the API concept
“download” is linked to the software concept “download”, and then
further connected with “service” and “upload” via the relations
defined in Wikidata. The use of generic knowledge graphs allow
us to determine relationships that are not explicit in the structure
or the reference documentation of the library.

The knowledge fusion process includes three steps: (1) API con-
cept reference extraction; (2) cross sentence concept fusion; and (3)
software concept fusion. It requires a preliminary step for generic
concept filtering, which is independent of the library.

Generic Concept Filtering. We extract the software concepts
from general knowledge graphs, such as Wikidata.

Wikidata is a free and open knowledge graph for general knowl-
edge and includes many software-related concepts (e.g., “service”,
“upload”, “download”, “computer network”) and relations (e.g., <“down-
load”, “part of ”, “service”>, <“download”, “opposite of ”, “upload”>).
However, a large part of concepts and relations in Wikidata are
irrelevant to software. Hence, we need to use a filter to select only
software concepts from general knowledge graphs for the API KG.

We select software concepts from general knowledge graphs and
add these concepts, together with their relations to the API KG.

Similar to the sentence classification in the descriptive knowl-
edge extraction (see Section 2.1.2), we use a BP neural network to
train a text classifier to distinguish between software-related con-
cepts and irrelevant concepts. The classification is based on the text
description of each concept in the general knowledge graph. For ex-
ample, each concept inWikidata has a correspondingWikipedia[12]
article describing it. We transform the concept descriptions into the

122

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu

inputs to the BP neural network in the following way: (1) convert
the description of each concept into a bag of words using standard
preprocessing procedure (i.e., tokenization, stop word removal, and
lemmatization); (2) generate a vector for each concept by averaging
the vectors of words from its description; and (3) use Word2vec [30]
to train word vectors based on the corpus of all the descriptions
of generic concepts. As training data, we randomly selected a sub-
set of the generic concepts and manually labeled each of them as
software-related or not. Details on the training and calibration of
the classifier used in our implementation are in Section 3.2.

API Concept Reference Extraction.We identify parts of de-
scriptive sentences of API elements that correspond to API concepts.

Concept references are extracted from descriptive sentences of
API elements by identifying noun phrases. More complex extraction
techniques may be employed, but investigating their applicability
is subject of future work. We use a parser to parse each descriptive
sentence, following the standard process of tokenization, POS tag-
ging, lemmatization, constituency parsing, and dependency parsing.
We extract all the atomic noun phrases, which do not include other
smaller noun phrases, from the parse tree. Then, we remove stop
words from the noun extracted phrases and eliminate the noun
phrases that only contain special characters (e.g., “#”, “!”). All the
remaining atomic noun phrases from the descriptive sentence are
considered candidate concept references.

Cross Sentence Concept Fusion.We link different descriptive
sentences of API elements that refer to the same API concept. The
identified API concepts are added to the API KG with links from the
descriptive sentences that reference the concepts.

For identifying candidate concept references (i.e., noun phrases)
that refer to the same API concept, we cluster the candidate concept
references based on their lexical similarity and context similarity.
For two candidate concept references n1 and n2 (noun phrases in
our case), their similarity sim(n1,n2) is the linear combination of
two similarities (w1 +w2 = 1).

sim(n1, n2) = w1 × simlex (n1, n2) +w2 × simcon (n1, n2) (1)

The lexical similarity (simlex) of n1 and n2 is the Jaccard similar-
ity [47] between their token sets Token(n1) and Token(n2).

simlex (n1, n2) =
|Token(n1) ∩Token(n2) |

|Token(n1) ∪Token(n2) |
(2)

The context similarity (simcon) of n1 and n2 is the normalized
cosine similarity between the text vectors of the two API docu-
mentation paragraphs where n1 and n2 reside. These paragraphs
are extracted from the reference documentation webpages based
on HTML tags, such as “<p>”, “
”. We choose paragraphs in-
stead of larger context, such as documents, because we observed
that relevant statements of a concept reference are often in close
proximity to each other. In the following equation, Vp (n) is the
k-dimension text vector of the paragraph where n reside, Simcos is
the cosine similarity between two vectors. Given a paragraph, its
vector representation is generated in a way similar to the sentence
vector generation used in sentence classification for descriptive
knowledge extraction (see Section 2.1.2), i.e., averaging the vectors
of the bag of words of the paragraph, after preprocessing.

simcon (n1, n2) =
Simcos (Vp (n1), Vp (n2)) + 1

2
(3)

Based on the similarity between each pair of candidate concept
references, we calculate their distance as 1 − sim(n1,n2) and use a
hierarchical clustering algorithm [43] to cluster all the candidate
concept references. Initially, each candidate concept reference is
considered a cluster. In each of the following iterations, the two
clusters that have the smallest distance are merged together. The
distance between two clusters is calculated by averaging the dis-
tance between the candidate concept references in the two clusters.
The iterative process ends when the highest inter-cluster similarity
is lower than a given threshold (explained later in Section 3.2).

For each cluster, the candidate concept reference with the highest
average similarity with the other ones in the same cluster, is selected
and used as the name of the cluster. The name of the cluster is added
to the API knowledge graph as a new API concept. Finally we add a
“referTo” relation from each of the descriptive sentences where the
API concept references in the cluster reside, to the new API concept.

Software Concept Fusion.We link API concepts or API entities
to generic software-related concepts from the general KG (a.k.a.
software concepts). Note that software concept fusion have differ-
ent meaning for an API concept versus an API entity: the former
means that the API concept is relevant to the software concept; the
latter means that the functionality of the API entity is relevant to a
software concept.

For each API concept, we collect all the descriptive sentences that
include references to it. For each software concept, we use its text de-
scription from the general knowledge graph (i.e., the corresponding
Wikipedia article). Then for each API concept or software concept,
we convert its description into a bag of words using standard pre-
processing procedure (i.e., tokenization, stop word removal, and
lemmatization), and generate a vector for the concept by averaging
the vectors of words from its description. We use Word2vec [30]
to train the word vectors based on the combined corpus of API
concepts and software concepts. The corpus includes two parts: (1)
all the text descriptions of the API reference documentation and (2)
all the text descriptions of the software concepts.

Given an API concept ac , we compare it with all the software
concepts and produce a set of candidate software concepts that have
at least one common token in their names (including their aliases).
Then, for each candidate software concept sc , we estimate the text
similarity between ac and sc , as the cosine similarity between their
vectors. If the similarity is higher than a given threshold, we regard
ac as a reference to sc and add a “relatedTo” relation from ac to sc .

Software concept fusion for API entities is conducted in a similar
way. To facilitate the identification of candidate software concepts,
we automatically generate a special alias for each API entity by
splitting its short name (i.e., the part after the last dot of the fully
qualified name) by camel case and underscore. The vector for an
API entity is generated based on all its descriptive sentences.

2.2 Summary Generation
For generating the summaries, we need the classes, methods, sen-
tences, and their relationships from the API KG. We compute a
relevance score between user query and these entities. Because
each entity in the knowledge graph has a corresponding document,
we could directly calculate the similarity between the query and
the entity’s document by using some document similarity model

123

GeneratingQuery-Specific Class API Summaries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

approach (e.g., from text retrieval). However, such approaches tend
to perform poorly for small documents, such as method entities
that only have a few sentences as description. They do not take
advantage of the relationships between entities (e.g., structural
relations between APIs) and knowledge from the general KG.

So we design a KG-based similarity between the entity and the
query, based on their textual and concept similarities with the user
query. Textual similarity measures the similarity between the se-
mantic representations of their text content, which can be learned
from the text corpus. Concept similarity measures the similarity
between the semantic representations of their corresponding con-
cepts, which can be learned from the API knowledge graph.

Specifically, given a query q, its similarity with a candidate entity
e is calculated with a linear combination of their textual and concept
similarities (w1 +w2 = 1).

KGSim(q, e) = w1 × Simtext (q, e) +w2 × Simconcept (q, e) (4)

The text semantics similarity between q and e (i.e., Simtext (q, e))
is calculated based on their text vectors. Their text vectors are
generated in the same way as the sentence vector, used for sentence
classification (see Section 2.1.2), by averaging their word vectors
trained with the corpus collected from all knowledge graph entity
documents, which is the combined corpus of API concepts and
software concepts. The word vectors of e are the vectors of the
words from its document. The concept similarity between q and
e (i.e., Simconcept (q, e)) is calculated using their concept vectors,
which are generated based on the API knowledge graph. For each
entity in the API KG, we use node2vec [18], a scalable graph feature
learning approach, to train a graph vector. The graph vector reflects
the structural features of an entity in the KG. The concept vector
of e can be represented by its graph vector.

We represent the query q in the same vector space as follows:
1) Candidate entities selection.We extract keywords from q, in-

cluding concept references and verbs. The concept reference ex-
traction is done in the same way as the API concept reference
extraction (see Section 2.1.3). Verbs usually map to method names.
In this way, we reduce the query to a set of keywords. For each key-
word, we identify a set of candidate entities. The set of candidate
entities related to the query is the union of the candidate entities
sets found for the keywords. The identification is based on whether
their names (including aliases), contain the keyword. Specifically, a
sentence entity’s name is the sentence itself. To increase the like-
lihood of matching entities, we automatically generate a special
alias for each API entity by splitting its short name (i.e., the part
after the last dot of the fully qualified name) by camel case and
underscore (e.g., for class java.math.BigDecimal we generate an
alias “big decimal”).

2) Text similarity calculation and filtering. Estimate the textual
similarity between each candidate entity and q by calculating the
cosine similarity between their text vectors. If the text similarity of
an entity to the query is less than a certain threshold t , the entity
is removed from the set of candidate entities.

3) Calculate the concept vector of the query.We use the concept
vectors of the set of candidate entities to estimate the vector repre-
sentation of the query q. The easiest way is to average the graph
vectors of all candidate entities. Then the query q can be mapped
to the central point of the set of mapped related candidate entities

in the API KG. Each candidate entity e is assigned a weight con-
sidering its relevance and keyword importance to the query (see
Equation 5 and 6):

Impor tance(e, q) =
∑

t∈query

T F IDF (t)
|Ct |

(5)

weiдhte,q = Impor tance(e, q) × Simtext (q, e) (6)

In Equation 5,TFIDF (t) the is the TFIDF value of one keyword t in
query q. |Ct | is the number of candidate entities extracted by the
keyword t . An entity A can be extracted by two keywords and a
keyword can extract multiple entities. For example, if the number
of entities extracted by these two keywords are 10, 20, and their
TFIDF scores are 0.2, 0.3, respectively. The importance score for
this entity A is 0.2

10 +
0.3
20 = 0.035.

Based on the text vectors (Vtext) and concept vectors (Vconcept)
of q and e , their textual similarity and concept similarity are calcu-
lated with the following equations, where Simcos means the cosine
similarity between two vectors.

Simtext (q, e) =
Simcos (Vtext (q), Vtext (e)) + 1

2
(7)

Simconcept (q, e) =
Simcos (Vconcept (q), Vconcept (e)) + 1

2
(8)

Finally, with KGSim(q, e) from Equation 4, KG-APISumm ranks
the API methods and descriptive sentences for the class and each
method that are relevant to a user query. Then, it selects the topM
methods (there could be fewer than M) for each method and the
class it selects the top S sentences (there could be fewer than S).

3 IMPLEMENTATION
We constructed an API knowledge graph for JDK 1.8[6] and Android
API 27[2].

3.1 Knowledge Extraction Implementation
We use Beautiful Soup[3], a Python library for parsing HTML and
XML documents, to parse the HTML pages of API reference doc-
umentations for knowledge extraction. We also use NLTK[7], a
Python library for text processing, to implement text preprocess-
ing (i.e., tokenization, stop word removal, and lemmatization) in
descriptive knowledge extraction.

To train the sentence classifier, we developed a web-based tool
for sentence labeling and invited 24 master and PhD students to
label sentences that were randomly selected from the API docu-
mentations. These students have between 2 and 5 years (average 3)
of Java and Android development experience and 10 of them have
industrial internship experience of at least 6 months. Each sentence
is independently labeled as one of the three types (i.e., [function-
ality], [directive], or [other]) by two students. The students have
access to the complete context of the sentence (i.e., the reference
documentation). For the sentences that were labeled differently, a
third student was assigned to give an additional label, to resolve
the conflict. The label with two of three votes was selected as fi-
nal. Finally, we obtained 8,345 labeled sentences: 4,167 labeled as
Functionality, 3,557 as Directive, and 621 as Other.

Based on the sentence corpus, we trained an 128-dimensional
word vector for each word using the word2vec algorithm provided
by gensim[30]. We set the following hyperparameters for the train-
ing, based on the default settings: min count=3, windows size=10,
sample=0.001, algorithm=skip-gram.

124

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu

The BP network for sentence classification was implemented
with Tensorflow 1.10.0[11], a Python framework for deep learning
framework. We set the following hyperparameters for the training,
based on the default settings: one hidden layer with 256 neurons,
learning rate=0.01, softmax function for output layer, batch size=512.
We obtained 0.9 accuracy with these parameters on a test set with
10% of the labeled data.

3.2 Knowledge Fusion Implementation
The descriptions of the generic concepts used in generic concept
filtering were extracted from the downloaded English Wikipedia
dump[1]. We invited four students to label the data for generic
concept filtering. Wikidata has a very large number of concepts
(about 50 million) and most of them are irrelevant to software. So
we selected a set of concepts that are likely related to software in
the following way. We selected all the concepts that have “subclass
of ”, “instance of ”, or “part of ” relations (directly or indirectly) with
“programming language”, “ software”, or “computer science”. Then we
selected a subset of concepts whose names or Wikipedia descrip-
tions include keywords such as, “software”, “library”, “computer”. In
this way, we selected 22,306 concepts and each of them was inde-
pendently labeled as software related or not by two students. The
consensus rate of the two people reached 99.8%. For the concepts
that were labeled differently, a third student was assigned to give
an additional label, for resolving the conflict. The label with two of
three votes was selected as final. Then we obtained 21,809 software-
related concepts and 497 irrelevant concepts. As a large part of
the Wikidata concepts are irrelevant to software, we randomly se-
lected another 32,216 concepts (which did not satisfy our previous
criteria) and automatically labeled them as irrelevant, making the
number of irrelevant concepts 1.5 times that of software-related con-
cepts. Finally we obtained 54,522 labeled generic concepts (21,809
software-related and 32,713 irrelevant). The BP network for generic
concept filtering was also implemented with Tensorflow 1.10.0. We
used the same hyperparameters as for sentence classification.

We use NLTK to parse descriptive sentences for API concept
reference extraction. The hierarchical clustering in cross concept
reference extraction is implemented with SciPy 1.0.0[10]. The two
weights in the similarity calculation (Equation 1) are equally set to
0.5 and the distance threshold of hierarchical clustering is set to
1.6. These parameters were chosen based on tuning with a small
testing data set, selected randomly from the API concept reference
extraction result, and labeled by the two of the authors.

The word vectors used for software concept fusion are trained in
the same way as for the sentence classification. The only difference
is that the corpus used here includes the descriptions of all the
software concepts from Wikipedia. The threshold of similarity is
set to 0.8 and the maximum number of software concepts for the
fusion of an API concept is set to 5. These parameters were chosen
based on tuningwith a small testing data set, consisting of randomly
selected API concept or API entities, and labeled software concepts
that should be fused from them (labeled by two of the authors).

3.3 Resulting API Knowledge Graph
The resulting API KG includes 562,578 entities and 4,243,842 re-
lations. Among them, there are 137,113 API entities and 305,826

relations between API entities. The KG includes 292,684 descriptive
sentences: 130,641 for Functionality and 162,043 for Directive.
Within these sentences, 54,596 API concepts are identified, which
are linked to 278,994 sentences (5.11 on average). The knowledge
graph also includes 78,182 software concepts, with 20,640 software
concepts linked to 49,256 API concepts and 90,209 API entities.

3.4 Summarization Generation
We use node2vec[8] to train the graph vectors. Because we consider
the relationships to be similar, we set the weights of all relationships
to 1.0. The hyperparameters used for the training followed the
default settings that node2vec implementation provides.

The two weightsw1 andw2 used in the calculation of the com-
bined similarity (see Equation 4) were set to 0.6 and 0.4, respectively,
based on tuning with a testing data set, using queries from ran-
domly selected SO questions with high quality answers and queries
proposed by the authors, based on their experience.

We use M=3 and S=2 summary generation, i.e., one class sum-
mary contains at most three methods and at most two sentences
for the class itself and for each each methods.

4 EVALUATION
We conducted several empirical studies to evaluate the intrinsic
quality and usefulness of the API summaries. We are interested in
answering the following research questions about the summaries
generated by KG-APISumm .

RQ1 What is the intrinsic quality of the summaries
generated by KG-APISumm ?

RQ2 How are the summaries generated by KG-APISumm
different than those generated by other approaches?

RQ3 How useful are the summaries generated by KG-
APISumm in helping developers during API retrieval?

RQ4 Is KG-APISumm generating different summaries
for different queries, for the same class?

The answer to RQ1 will inform us whether the generated sum-
maries include relevant and understandable information. RQ2 will
reveal whether the KG-APISumm generated summaries contain
relevant information, which is not included in other type of class
summaries, or vice versa. RQ3 provides extrinsic evaluation and
will indicate whether the summaries are useful in addressing spe-
cific developer tasks. Finally, RQ4 will tell us whether KG-APISumm
actually produces task-specific summaries, that is, the same class
will have different summary for different queries.

In order to answers the research questions, we collected a set of
queries, corresponding to programming tasks. We asked external
evaluators to assess the quality of the summaries generated by KG-
APISumm for these tasks (RQ1) and compared themwith summaries
generated by three baseline approaches (RQ2). Another group of
users analyzed the classes and methods retrieved for another set
of queries, with and without the help of the generated summaries
(RQ3). Finally, we answer RQ4 by providing examples of classes
that have distinct summaries for different queries. Details of the
empirical studies can be found in our replication package [9].

125

GeneratingQuery-Specific Class API Summaries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Queries for the intrinsic evaluation
Post ID Title C M
1109022 Close/hide the Android Soft Keyboard 3 9
153724 How to round a number to n decimal places in Java 3 10
2115758 How do I display an alert dialog on Android? 2 7
2885173 How do I create a file and write to it in Java? 6 22

3028306 Download a file with Android, and showing the progress
in a ProgressDialog 3 14

3035692 How to convert a Drawable to a Bitmap? 1 5
3481828 How to split a string in Java 2 7
415953 How can I generate an MD5 hash? 1 6

432037 How do I center text horizontally and vertically in a
TextView 1 2

46898 How do I efficiently iterate over each entry in a Java Map 2 4
5369682 Get current time and date on Android 3 6
858980 File to byte[] in Java 4 11
Sum 31 103

4.1 Intrinsic Quality of the Summaries
We perform an empirical intrinsic evaluation for assessing the API
summaries generated by KG-APISumm, following the evaluation
proposed in previous research [32, 45].

4.1.1 Tasks andQueries. We selected programming tasks, which
appear in StackOverflow (SO) questions, based on the following
criteria: (1) the question has a tag “Java” or “Android”; (2) the pro-
gramming task involves using APIs that are included in JDK 1.8 or
Android API 27; (3) the question has an accepted answer. We ranked
the SO questions that match the above criteria by their scores and
selected the 20 top-ranked questions. Form these, we randomly se-
lected six questions for Java and six for Android. The SO questions
are included in Table 1. Column C shows the number of relevant
classes for this task the column M the number of relevant methods.

We determined the correct answers (classes and methods) for
each query, by consulting the SO answers. Two of the co-authors
and two external persons are involved, with one of the co-authors
acting as expert. Each question was analyzed by two persons (at
least one external). Each person independently annotated the class(es)
and method(s) that he thinks are relevant. If a class/method is
marked as relevant by both persons, then the class/method is con-
sidered to be the correct. Otherwise a the expert will make the final
judgment, selecting one or both options.

4.1.2 Participants. We invited 12 master students who are expe-
rienced in Android and Java development to evaluate the quality
of the API summaries. Their programming expertise was assessed
through a survey administered to 50 graduate students. The 12
with the most experienced were selected. It is important for the
summary evaluators to know and understand how to solve each
task. Six of the 12 students evaluated the summaries for RQ1, while
the other six (decided randomly) evaluated the summaries for RQ2.

4.1.3 Protocol. The students completed the evaluation in one ses-
sion, in the lab, under the supervision of one of the authors, who
also conducted the post interviews. For each task, they read the SO
post solution for the task, to ensure they know how the task can
be solved. Then they evaluated each summary for completeness,
conciseness, and understandability, as in previous research on soft-
ware summarization [32, 45]. For each class summary, the students
answered three questions on a 4-points Likert scale (1-Disagree;
2-Somewhat disagree; 3-Somewhat agree; 4-Agree):

Figure 3: Answers to the three RQ1 questions. 1-disagree, 2-
somewhat disagree, 3-somewhat agree, 4-agree

(1) Completeness–does the summary contain all the necessary
information?

(2) Conciseness–does the summary contain no (or very little)
unnecessary or redundant information?

(3) Understandability–is the summary understandable?
We phrase the second question negatively to maintain the inter-
pretation of the answers similar to all three questions. After a
participant finished the evaluation, we asked for explanations, in
case of low ratings (1 or 2).

4.1.4 Results and Analysis. Each question was answered by three
students, for each summary. We cumulate the answers for each
question, across all summaries, and we focus on the percentage of
"positive" (3 or 4) and negative" answers (1 or 2).

Figure 3 shows the distribution of the answers for each question.
For completeness 45.2% of the answers are 4 (agree), 45.2% are
3 (somewhat agree), 9.6% are 2 (somewhat disagree), and there
are no 1 (disagree) answers. For conciseness 53.8% of the answers
are 4, 36.6% are 3, 9.6% are 2, and there are no 1 answers. For
understandability 80.6% of the answers are 4 , 19.4% are 3, and
there are no 2 and 1 answers.

We used the one sample T-test [14] for verifying the statistical
significance of the difference between the participants’ ratings
and random ratings. The null hypothesis is that the ratings for
completeness, conciseness, and understandability are random and the
mean of the ratings for each property is 2.5. The results show that
for each property the statistical difference is significant (p << 0.01),
so we reject the null hypothesis.

Seven summaries received at least one 2 rating (somewhat dis-
agree) for conciseness. The participants explained in the post in-
terview that they think some methods in summary are irrelevant
and considered that as unnecessary information. However, for all
of the seven summaries, there was at least one 3 (somewhat agree)
or 4 (agree) rating for conciseness. For example, the summary for
class java.math.BigDecimal was rated for conciseness with 2, 4, 4.
The class is relevant for the “How to round a number to n decimal
places in Java” question and it includes the following methods in
the summary:

java.math.BigDecimal.movePointRight(int),
java.math.BigDecimal.movePointLeft(int), and
java.math.BigDecimal.scale().

126

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu

One rater considered the scale() method as the sole correct
method for the task and the other two are unnecessary, hences gave
a 2 rating. The other two raters considered movePointRight(int)

are also useful for this task.
Six summaries received 2 (somewhat disagree) ratings for com-

pleteness. Rater reported that these ratings were given by those
who considered other methods, not included in the summary, to
be relevant to the task. Once again, these classes also received at
least one 3 (somewhat agree) or 4 (agree) rating, as the other raters
considered that the three listed methods are the most relevant, even
when they found additional relevant methods. For example, the
summary for the java.util.Map.Entry class was rated with 2, 4, 4
for completeness. The class is relevant for the query“How do I effi-
ciently iterate over each entry in a Java Map?”. One rater considered
that the summary misses useful methods for the task. The other
two raters considered the two class sentences useful enough to
explain that this class can be used for iterate over the Map, hence
their 4 rating. The iteration is done by methods from java.util.Map,
while the methods from java.util.Map.Entry are just use to wrap
the data. In this case, the lower rating seems more appropriate.

We also look at the agreement rate for each question. For concise-
ness, 29% of summaries received the same rating by all three raters
and 97% the same rating by at least two raters. For completeness,
29% of summaries received the same rating by all three raters and
100% the same rating by at least two raters. For understandability,
55% of summaries received the same rating by all three raters and
100% the same rating by at least two raters.

4.1.5 Threats to Validity. The main threat to the construct validity
is the subjectivity introduced in determining the correct answers
for the 12 queries. To minimize bias, we selected tasks related to
SO posts with valid answers, which we used.

KG-APISumm ’s calibration impacts the internal validity of our
conclusions. We used different data from the one used in the evalu-
ation to find the best parameters of our approach. Another threat
is subjectivity and error-proneness of the human-based evaluation.
To mitigate this threat, we relied on three evaluators per summary
and reported agreement data.

The number of tasks used in the evaluation impacts the external
validity of our conclusions. A larger evaluation would be desirable.

4.2 Comparison with Baseline Approaches
For answering RQ2, we use the same tasks and summaries used for
answering RQ1 (see Section 4.1.1). We asked six of the 12 partic-
ipants selected as described in Section 4.1.2 to compare the sum-
maries produced by KG-APISumm with the summaries produced
by three baseline approaches.

4.2.1 Baseline Approaches. We used three baseline approaches,
one implemented by the authors, and two using existing tools.

The first baseline is based on TextRank [29], a graph-based rank-
ing model for automatic text summarization. We use TextRank to
generate the summary for classes, using all sentences from the class.
TextRank extracts up to five sentences as the class summary. For
implementation we use gensim[4].

Table 2: Comparison with Baseline Approaches
Approach APIKG-Summ Biker TextRank Google Average

APIKG-Summary X 2.75 3.29 3.34 3.13
Biker 2.67 X 2.73 2.91 2.77

TextRank 2.30 1.96 X 2.39 2.22
Google 1.84 1.82 2.21 X 1.96

The second baseline approach is based on Google. In order to
generate a class summary, we search in Google with the SO ti-
tle, limiting the results to jdk reference documentation website or
android sdk documentation website. We take the digests of the
relevant search results (class and methods) as the API summaries.

The third baseline approach is Biker [22], an API recommenda-
tion approach that provides summaries for the recommended APIs
by combining information from SO and from the API documenta-
tion. We use the SO question title as query in Biker, limit the search
to class-level, and get the summary from the search results.

4.2.2 Protocol. We adopt a protocol similar to the one used in
previous research, when comparing release notes produced in two
different ways [34, 35]. We assigned each query/task to two par-
ticipants, each participant rated the summaries for four tasks. For
each query/task, participants were shown the same relevant classes,
but with different summaries, each generated by a different ap-
proach. The raters only compared two summaries at a time. Given
summary S1 and S2, for class C and query Q , each produced by a
different approach, the raters were asked to consider each elements
of the summary (i.e., method/class sentence and method signature,
SO question, or code fragment). For each summary element they
were asked to mark whether the element is: (1) present only in
S1; (2) present only in S2 only in B; or (3) present in both in both
S1 and S2. Then for those that are only in S1 or only in S2, and
rate on a 4-Likert scale whether the unique elements are useful.
The rating correspond to: 1-Strongly disagree; 2-Disagree; 3-Agree;
and 4-Strongly agree. We asked the raters to provide an overall
evaluation of these unique items, rather than assessing each item
individually, which would have taxed the participants too much, in
terms of time and effort.

Because Biker onlyworks for JDK,we only compareKG-APISumm
TextRank and Google using the Android queries, whereas all three
for the JDK queries. If an approach cannot generate a summary for
a class, then we ignore this approach when comparing different
summaries of this class. For example, Google did not retrieve some
relevant classes with the specified query).

4.2.3 Results and Analysis. Table 2 show the average ratings for
each pair. The average rating in cell (i,j) indicates the rating of the
information present in the summaries produced by the approach
from row i and not in those produced by the approach from column j.
For example, the information present the KG-APISumm summaries
(row 2) and not in TextRank summaries (column 4) were rated in av-
erage with 3.29. Conversely, the information present the TextRank
summaries (row 4) and not in KG-APISumm summaries (column 2)
were rated in average with 2.30.

In 72% of the cases the two ratings for a pair of summaries the
same. In 48% of the cases the two ratings for a pair of summaries are
3 and 4. In 51% of the cases the two ratings for a pair of summaries
are 1 and 2. In 15% of the cases the two ratings disagree significantly,
one is 1 or 2 and the other is 3 or 4, indicating low disagreement.

127

GeneratingQuery-Specific Class API Summaries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

4.2.4 Threats to Validity. We share the same construct validity
threats with the previous study, as we used the same data.

The internal validity of our conclusions is impacted by the fact
that the baseline approaches generate different type of summaries
and we had to compose the summaries using the data produced
by those tools, to be comparable with ours. Another threat is sub-
jectivity and error-proneness of the human-based evaluation. To
mitigate this threat, we relied on two evaluators per summary pair
and reported agreement data.

The conclusions validity is impacted by the fact that we used
different data sets for different pairs of summaries.

The number of tasks used in the evaluation impacts the external
validity of our conclusions. A larger evaluation would be desirable.

4.3 Usefulness of the Summaries
We perform an extrinsic evaluation for addressing RQ3. A group of
students were asked to find the relevant classes to a query, returned
by a tool named Biker [22]. Students performed these tasks with
and without having KG-APISumm generated summaries. The goal
is to assess whether the use of the KG-APISumm summaries help
in performing the given task.

4.3.1 Tasks and Queries. We selected 20 queries (for API retrieval)
from the data set used to evaluate Biker [22] and use its ground truth
information. We divided the queries into 10 types and we choose
randomly two queries for each type query. The query classification
combines the number of ground truth classes corresponding to the
query (one or multiple) and the ground truth classes ranking in the
Biker search results. For a query that has one ground truth class,
there are five types of rankings: ground truth class in top 1, top
2-3, top 4-5, top 6-10, out of top 10. For a query that has multiple
ground truth classes, there are five types of rankings: all ground
truth classes are in top 3, all in top 5, all in top 10, at least one in top
10 and at least one out of top 10, all out of top 10. The reason we
created these categories is that we wanted to maximize the variety
of retrieval tasks and results (i.e., one or more relevant classes, with
various ranks). We divide the queries into two groups, QA and QB.
Each group contains 10 queries, one form each query category.

4.3.2 Participants. We invited 12 master students with Java pro-
gramming experience, yet with different experience levels (begin-
ners, intermediate, advanced). Their programming expertise was
assessed through a survey distributed to 50 graduate students. None
of these students participated in the previous studies. We divided
the participants in two groups of six (PA and PB), each group with
two beginners, two intermediates, and two advanced.

4.3.3 Protocol. The studied factor is the use of summaries (i.e., the
independent variable). We adopted a balanced treatment distribu-
tion for the groups. Participants in group PAwere asked to complete
the tasks in group QA, using the KG-APISumm summaries and the
tasks in group QB, without the use of summaries. Conversely, par-
ticipants in group PB were asked to complete the tasks in group
QB, using the KG-APISumm summaries and the tasks in group QA,
without the use of summaries. Overall, each participant was asked
to complete all 20 tasks, 10 with the use of KG-APISumm summaries
and 10 without. The tasks were interleaved, for each participant,
one performed with KG-APISumm summaries and one without.

For a given task, the participant is given the corresponding query
and the top-10 classes retrieved by Biker (with the full javadoc). In
the first treatment, the list of results also includes the KG-APISumm
summaries for each class. Note that in some cases the relevant
classes are not in top-10. The participants were asked to select the
class(es) they think can solve the problem described in the query.
The participants were allowed to use the internet, if they deemed
the provided information as insufficient, yet we asked them to
ignore the SO post where the task query is from.

We developed a website each person used to complete the task,
one by one, and to submit their answer. The system automatically
records the completion time. We recorded the time each task is com-
pleted and the correctness of each answer. If the classes submitted
by a participant contained at least one ground truth class, we con-
sider the answer correct, and the correctness score is 1. Otherwise
the correctness score is 0 for this query.

4.3.4 Result and Analysis. Table 4 reports the average completion
time and correctness for each treatment, which indicate that when
using the KG-APISumm summaries, participants (in both groups)
complete the tasks 17.9% faster (37 seconds) and their answers are
more correct (in average).

We verified the distribution of the data (i.e., normal) using the
Kolmogorov-Smirnov test [27] (p < 0.05) and used the Welch’s T-
test [49] for verifying the statistical significance of the differences
between treatments. The differences in time and correctness are
both statistically significant (p < 0.05).

For most of queries, the use of summary leads to faster responses,
but not in all cases. In some cases the participants insisted on addi-
tional web searches, leading to longer response time. In some cases,
participants submitted an empty answer after a short time, essen-
tially indicating that they cannot solve the task. Participants using
the summaries tended to spend more time reading the summaries
and than searching for additional results.

We analyzed the effect of the summaries on beginners, inter-
mediate, and advanced programmers from the subject groups (see
Table 5). The beginners spent more time in average per task (in both
treatments), than the intermediates and advanced participants, who
spent similar times. In addition, the average time improvement seen
by the beginners is larger than that experienced by intermediates
and advanced participants, suggesting that the summaries are more
useful for inexperienced programmers. We also observed that when
task is more complex (i.e., with more than one class in the oracle),
the summary saves more time than when the task is easier. For the
single class tasks, the summaries are most helpful (221s->172s) for
the single-top-10 cases. For the multi class tasks, the summaries
are most helpful (232s->160s) for the multi-top-10 cases.

4.3.5 Threats to Validity. We share the simlar construct validity
threats with the previous studies, but we mitigated this issue by
selecting tasks that have an external oracle, define in other research.

Another threat is subjectivity and error-proneness of the human-
performed tasks. To mitigate this threat we designed a balanced
treatment, to account fo variability between subjects and tasks.

The conclusions validity is impacted by the comparisons of aver-
ages, which we mitigate by reporting statistical significance. The
number of tasks and users used in the evaluation impacts the exter-
nal validity of our conclusions. A larger evaluation is needed.

128

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang Xing, and Yang Liu

Table 3: Same Class Summmary For different Query
ID Query Method in Summary Biker Ground Truth Method
Q1 Elegant way to read file into byte[] array in Java readAllBytes, write, copy readAllBytes
Q2 Getting A File’s Mime Type In Java probeContentType, createTempFile, createTempFile probeContentType
Q3 Getting file creator/owner attributes in Java getOwner, setOwner, getOwner getOwner
Q4 How to append text to file in Java 8 using specified Charset newBufferedWriter, write, lines write
Q5 How can I write to a specific line number in a txt file in Java write, readAllLines, write readAllLines, write
Q6 Add custom attribute or metadata to file java getFileAttributeView, readAttributes, getOwner setAttribute
Q7 Add all files recursively from root with Java 8 Stream walk, walk, walk walk

Table 4: Avg. Correctness and Time per Treatment
Task Group QA Task Group QB Average

With Summary 0.87/159s 0.95/185s 0.91/172s
Without Summary 0.82/212s 0.78/207s 0.80/209s

Table 5: AverageCorrectness andCompletionTimeAnalysis

Beginner Interm. Advanced Single
Cl.

Multi
Cl.

With Summary 0.85/179s 0.92/169s 0.95/167s 0.95/169s 0.87/175s
Without Summary 0.87/227s 0.67/202s 0.85/199s 0.85/190s 0.75/228s
Improvement -0.02/48s 0.25/33s 0.1/32s 0.10/21s 0.12/53s

4.4 Variability in the API Summaries
We want to verify that KG-APISumm generates distinct summaries
for different queries. We look examples where that is the case.

We select seven queries from Biker data set that contain the
same class in the ground truth, namely java.nio.file.Files[5].
The class provides methods that operate on files and directories.

The seven queries are shown in Table 3. Column 3 indicates the
methods included in the summaries. Same method name in the
column indicates overriding. Column 4 shows ground truth method
from the Biker data set.

The class sentences are the same for each query (not displayed
here), but the methods vary from query to query, implicitly the de-
scribing sentences too (not included here). However, six of the seven
queries the summaries include the Biker’s ground truth method
and one (Q6) does not. Nontheless, the methods included in the
summary are somewhat related. Overall, KG-APISumm generates
different query-related summaries for the same class.

5 RELATEDWORK
We survey related research that focuses on source code summa-
rization at class level. Recent surveys on automatic software sum-
marization [31, 36] cover approaches for summarizing other type
of software artifacts, or smaller code elements than classes (e.g.,
code blocks or methods). Most related is the work Petrosyan et
al. [39], who augmented API type documentation with usage ex-
planations extracted from development tutorials, while Treude and
Robillard [48] did it with insights from SO. In both cases, the in-
jected information was detected with a supervised text classifier.

Other related work focused on discovering relevant tutorial frag-
ments [23] and linking source code examples to API documenta-
tion [33, 46]. In common with our approach, these approaches link
APIs with relevant text or code fragments in various sources. How-
ever, unlike our work they do not construct a graph of API-related
knowledge and do not generate query-dependent summaries.

In other work, Moreno et al. [32] investigated the generation of
natural language comments for Java classes, by leveraging code

stereotypes (i.e., abstractions that represent the role or responsibil-
ity of code elements), identified through static analysis. A similar
approach was used by Panichella et al. [38] to document test cases.
Haiduc et al. [19, 20] proposed the use of text retrieval techniques
(in particular, vector space model and latent semantic indexing) to
select descriptive terms for methods and classes. Similar approaches
were followed by De Lucia et al. [16, 17] to generate class keywords.
These type of summaries rely strictly on information extracted from
the code to be summarized and are task-agnostic.

Some work on summarizing code at other granularity is also rel-
evant, in as much as it extracts information from other sources than
the code to be summarized, based on relationships with it (struc-
tural or textual). For example, McBurney and McMillan [28] gener-
ate summaries for Java methods, including information about the
code’s context (e.g., called methods). Moreno et al. [34, 35] extracts
information from issue trackers for summarizing code changes,
as release notes. Panichella et al. [37] extract method descriptions
from related developer communications. More recently Huang et
al. [22], proposed Biker, a tool which recommends relevant APIs to
a query. At the same time it generates template-based summaries,
including information from API descriptions and relevant code
examples in SO posts. The Biker summaries are used in this pa-
per for comparison purposes. Unlike our work presented here, the
summaries produced by all these approaches are not specific to a
programming task or a user query.

6 CONCLUSIONS
We proposed an approach (KG-APISumm) for generating query-
based class API summaries, using an API knowledge graph. The
queries are natural language formulations of programming tasks.
In many cases, different queries result in different summaries for
the same classes. A set of external subjects deemed the summaries
to be complete, concise, understandable, and including unique in-
formation that is more useful than that included in summaries
produced by other three summarization tools. More importantly,
subjects solving 20 different API retrieval tasks, with the help of
the KG-APISumm summaries, achieved better and faster answers
to the retrieval tasks, in average, than in the absence of summaries.
More than that, novice programmers benefit most from the use of
such summaries in the retrieval tasks.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2016YFB1000801, and
in part by the US NSF grants CCF-1526118 and CCF-1848608.

129

GeneratingQuery-Specific Class API Summaries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] 2018. Wikipedia Dump. Retrieved July 20, 2018 from https://dumps.wikimedia.

org/enwiki
[2] 2019. Android 27. Retrieved June 18, 2019 from https://developer.android.com/

reference/packages
[3] 2019. Beautiful Soup. Retrieved June 18, 2019 from https://www.crummy.com/

software/BeautifulSoup/
[4] 2019. gensim. Retrieved June 18, 2019 from https://radimrehurek.com/gensim/
[5] 2019. java.nio.file.Files Document. Retrieved June 18, 2019 from https://docs.

oracle.com/javase/8/docs/api/java/nio/file/Files.html
[6] 2019. JDK 1.8. Retrieved June 18, 2019 from https://docs.oracle.com/javase/8/

docs/api/
[7] 2019. nltk. Retrieved June 18, 2019 from https://www.nltk.org/
[8] 2019. node2vec. Retrieved June 18, 2019 from https://github.com/aditya-grover/

node2vec
[9] 2019. Replication Package. Retrieved June 18, 2019 from https://fudanselab.

github.io/Research-ESEC-FSE2019-APIKGSummary/
[10] 2019. scipy. Retrieved June 18, 2019 from https://www.scipy.org
[11] 2019. tensorflow. Retrieved June 18, 2019 from https://www.tensorflow.org
[12] 2019. wikipedia. Retrieved June 18, 2019 from https://wikipedia.org
[13] David Binkley, Dawn Lawrie, Emily Hill, Janet Burge, Ian Harris, Regina Hebig,

Keszocze, Karl Reed, and John Slankas. 2013. Task-Driven Software Summariza-
tion. In 29th IEEE International Conference on Sofware Maintenance (ICSM’13),
ERA track. Eindhoven, The Netherlands, 432–435.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. TACL 5 (2017), 135–146.

[15] Barthélémy Dagenais and Martin P. Robillard. 2012. Recovering traceability links
between an API and its learning resources. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 47–57.

[16] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella,
and Sebastiano Panichella. 2012. Using IR Methods for Labeling Source Code
Artifacts: Is It Worthwhile?. In IEEE 30th International Conference on Program
Comprehension (ICPC’12). Passau, Germany, 193–202.

[17] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, and
Sebastiano Panichella. 2014. Labeling Source Code with Information Retrieval
Methods - An Empirical Study. Empirical Software Engineering (2014).

[18] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[19] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting Program
Comprehension with Source Code Summarization. In 32nd ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE’10), NIER track. Cape Town, South
Africa, 223–226.

[20] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In 17th IEEE Working Conference on Reverse Engineering (WCRE’10). Beverly, MA,
35–44.

[21] Robert Hecht-Nielsen. 1988. Theory of the backpropagation neural network.
Neural Networks 1, Supplement-1 (1988), 445–448.

[22] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018. 293–304.

[23] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An unsupervised
approach for discovering relevant tutorial fragments for APIs. In Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017. 38–48.

[24] Rafael Lotufo, Zeeshan Malik, and Krzystof Czarnecki. 2012. Modelling the
’Hurried’ Bug Report Reading Process to Summarize Bug Reports. In 28th IEEE
International Conference on Software Maintenance (ICSM’12). Trento, Italy, 430–
439.

[25] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. 2014. Modelling the
’hurried’ bug report reading process to summarize bug reports. Empirical Software
Engineering 20, 2 (2014), 516–548.

[26] Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Trans. Software Eng. 39, 9 (2013), 1264–1282.

[27] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[28] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation Gener-
ation via Source Code Summarization of Method Context. In Proceedings of the
22Nd International Conference on Program Comprehension. ACM, New York, NY,
USA, 279–290.

[29] Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing Order into Text. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing , EMNLP 2004, A meeting of SIGDAT, a Special Interest Group of the ACL,
held in conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain. 404–411.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composi-
tionality. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States. 3111–3119.

[31] Laura Moreno. 2016. Software documentation through automatic summarization
of source code artifacts. The University of Texas at Dallas.

[32] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and Vijay Shanker. 2013. Automatic Generation of Natural Language Summaries
for Java Classes. In 21st IEEE International Conference on Program Comprehension
(ICPC’13). IEEE, San Francisco, USA, 23–32.

[33] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drian Marcus. 2015. How Can I Use This Method?. In 37th IEEE/ACM International
Conference on Software Engineering (ICSE’15). IEEE, 880–890.

[34] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2014. Automatic Generation of Release Notes. In
22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE’14). ACM, New York, NY, USA, 484–495.

[35] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2017. ARENA - An Approach for the Automated
Generation of Release Notes. IEEE Trans. Software Eng. 43, 2 (2017), 106–127.

[36] N. Nazar, Y. Hu, and H. Jiang. 2016. Summarizing Software Artifacts: A Literature
Review. Journal of Computer Science and Technology (2016).

[37] Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, and Andrian Marcus.
2012. Mining Source Code Descriptions from Developer Communications. In
20th IEEE International Conference on Program Comprehension (ICPC’12). Passau,
Germany, 63–72.

[38] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The Impact of Test Case Summaries on Bug Fixing Per-
formance: An Empirical Investigation. In Proceedings of the 38th International
Conference on Software Engineering. 547–558.

[39] Gayane Petrosyan, Martin P. Robillard, and Renato De Mori. 2015. Discovering
Information Explaining API Types Using Text Classification. In Proceedings of
the International Conference on Software Engineering. 869–879.

[40] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2010. Summarizing Software
Artifacts: A Case Study of Bug Reports. In 32nd ACM/IEEE International Conference
on Software Engineering (ICSE’10). Cape Town, South Africa, 505–514.

[41] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2014. Automatic Summa-
rization of Bug Reports. Software Engineering, IEEE Transactions on 40, 4 (2014),
366–380.

[42] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (2011), 703–732.

[43] Lior Rokach and Oded Maimon. 2005. Clustering Methods. In The Data Mining
and Knowledge Discovery Handbook. 321–352.

[44] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering
Questions during a Programming Change Task. IEEE Trans. Software Eng. 34, 4
(2008), 434–451.

[45] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. 2010. Towards Automatically Generating Summary Comments for
Java Methods. In 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE’10). Antwerp, Belgium, 43–52.

[46] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In 36th International Conference on Software Engineering, ICSE
’14, Hyderabad, India - May 31 - June 07, 2014. 643–652.

[47] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data
Mining. Addison-Wesley.

[48] Christoph Treude and Martin P. Robillard. 2016. Augmenting API documenta-
tion with insights from stack overflow. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016.
392–403.

[49] Bernard L Welch. 1947. The generalization ofstudent’s’ problem when several
different population variances are involved. Biometrika 34, 1/2 (1947), 28–35.

130

https://dumps.wikimedia.org/enwiki
https://dumps.wikimedia.org/enwiki
https://developer.android.com/reference/packages
https://developer.android.com/reference/packages
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://radimrehurek.com/gensim/
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
https://www.nltk.org/
https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec
https://fudanselab.github.io/Research-ESEC-FSE2019-APIKGSummary/
https://fudanselab.github.io/Research-ESEC-FSE2019-APIKGSummary/
https://www.scipy.org
https://www.tensorflow.org
https://wikipedia.org

	Abstract
	1 Introduction
	2 KG-based Class API Summarization
	2.1 API KG Construction
	2.2 Summary Generation

	3 Implementation
	3.1 Knowledge Extraction Implementation
	3.2 Knowledge Fusion Implementation
	3.3 Resulting API Knowledge Graph
	3.4 Summarization Generation

	4 Evaluation
	4.1 Intrinsic Quality of the Summaries
	4.2 Comparison with Baseline Approaches
	4.3 Usefulness of the Summaries
	4.4 Variability in the API Summaries

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

