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5 Abstract—StackOverflow (SO) provides informal documentation for APIs in response to questions that express API related developer

6 needs. Navigating the information available onSOand getting information related to a particular API and need is challenging due to the

7 vast amount of questions and answers and the tag-driven structure of SO. In this paper we focus on identifying and classifying fine-grained

8 developer needs expressed in sentences of API-related SOquestions, as well as the specific information types used to express such

9 needs, and the different roles APIs play in these questions and their answers.We derive a taxonomy, complementing existing ones,

10 through an empirical study of 266 SOposts.We then develop and evaluate an approach for the automated identification of the fine-grained

11 developer needs in SO threads, which takes a thread as input and outputs the corresponding developer needs, the types of information

12 expressing them, and the roles of API elements relevant to the needs. To showa practical application of our taxonomy, we introduce and

13 evaluate an approach for the automated retrieval of SO questions, based on these developer needs.Q1

14 Index Terms—Developer information need, API, Stack Overflow

Ç

15 1 INTRODUCTION

16 SOFTWARE reuse through Application Programming Inter-17 faces (APIs) is an integral part of software develop-
18 ment [1], but learning how to effectively use APIs can be
19 difficult [2], often impeded by the inadequacies of API docu-
20 mentation. While such documentation might capture an
21 API’s structure, it tends to lack information on concepts, pur-
22 poses, and usage scenarios [3]. As an alternative form of doc-
23 umentation, the question-and-answer forum Stack Overflow
24 (SO) can fill this gap to some extent by providing informal
25 “how-to” documentation in response to specific needs [4].
26 However, identifying and extracting information avail-
27 able on Stack Overflow, which is relevant to APIs in the con-
28 text of a task, is challenging due to the vast amount of
29 questions and answers. At the time of writing, Stack Over-
30 flowhostsmore than 19million questions and close to 29mil-
31 lion answers. Even for a particular API library, the amount of
32 information can be overwhelming, e.g., there are currently
33 about 25,000 questions tagged with “junit”. Stack Overflow
34 only offers minimal organization of this information via its
35 tagging mechanism which allows users to associate up to

36five tags and a title with each question. This tagging mecha-
37nism is predominantly used to indicate the technologies rele-
38vant to a question [5]. As a result, all discussions relevant to
39an API library are often grouped under a single tag, not
40doing justice to developers who have task-specific informa-
41tion needs [6]. The title of SO posts summarizes them better
42than the tags, however it often does not cover all pertinent
43information for the question. For example, the following title
44“How to split a string in Java”1 only reflects one of the two
45goals of the questioner: “I have a string [..] that I want to split
46into two strings. [...]I also want to check if the string has ’-’ in it.”
47If developers only look at the title, they might ignore discus-
48sions related to their needs.
49People asking questions on SO have various backgrounds
50(e.g., students, professional developers, etc.), yet we will
51refer to them simply as developers. With regard to the goals of
52the questioners, we refer to them as developer information
53needs or simply developer needs.
54Developer information needs have been the subject of
55many studies (e.g., [7], [8]) and several researchers ana-
56lyzed and categorized the SO questions on some of these
57needs ([4], [5], [9], [10], [11], [12], [13], [14], [15], [16], [17],
58[18]). Beyer et al. [9] categorized SO questions in seven
59high-level categories (i.e., API Usage, Conceptual, Discrep-
60ancy, Errors, Review, API Change and Learning), which sub-
61sume categories defined in previous work.
62We conjecture that the categories defined by Beyer et al.
63[9] are too coarse-grained to reason about specific developer
64needs and require further refinement. For example, the
65“API Usage” category is defined as “A how type of questions
66asks for ways to achieve a goal”. As Beyer et al. , we found that
67many SO questions (51.9% in our data - Section 2.2.1) refer
68to more than one developer information need, showing that
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69 many questions are complex. For example, the following SO
70 question2 includes information (highlighted in bold) express-
71 ing at least three different information needs: (1) implement-
72 ing a functionality; (2) error handling; (3) comparingAPIs.

73 I was trying to load a file in a webapp, and I was getting a File-
74 NotFound exception when I used FileInputStream. However,
75 using the same path, I was able to load the file when I did getRe-
76 sourceAsStream(). What is the difference between the twometh-
77 ods, and why does one work while the other doesn’t?

78 Although it seems that only the last API comparison ques-
79 tion is the question directly raised by the questioner, other
80 developers with similar goals to the first one and second
81 one can also benefit from this discussion. At the same time,
82 the answers to a question often involve multiple APIs, each
83 having a different role in the answer, an aspect not captured
84 in existing taxonomies.
85 We argue that we need a more fine-grained categoriza-
86 tion of developer information needs and expressed in SO
87 question, which would help users to understand and find
88 easier complex questions and answers.
89 In this paper we focus on identifying and classifying fine-
90 grained developer needs expressed in sentences of API-
91 related SO questions, as well as the specific information types
92 used to express such needs, and the different roles APIs
93 play in these questions and their answers. We derive a fine-
94 grained taxonomy, complementing existing ones, through
95 an empirical study of 266 SO posts (Section 2). We then
96 develop and evaluate an approach for the automated identi-
97 fication of these fine-grained developer needs in SO threads
98 (a thread includes a question post with the corresponding
99 answer posts), which takes a thread as input and outputs
100 the corresponding developer needs, the types of informa-
101 tion used to express them, and the roles of the pertinent API
102 elements from the thread (Section 3.3). The evaluation indi-
103 cates that our approach can accurately (83.6% precision and
104 85.4% recall, in average) identify developer needs, relevant
105 information types, and API roles, in SO threads.
106 We conjecture that the fine-grainedAPI-related developer
107 needs and the API roles capture essential features of the SO
108 threads, which help in the retrieval of SO questions, espe-
109 cially multiple developer information needs are involved.
110 We developed a retrieval approach leveraging the above-
111 mentioned identification tool (Section 5). For evaluation, we
112 compared the retrieval performance of our approach with a
113 state-of-the-art retrieval approach, AnswerBot [19] The
114 results show that our approach outperforms AnswerBot on
115 Top@1 (0.625 versus 0.484), Top@5 (0.828 versus 0.797), and
116 Top@10 (0.859 versus 0.828) accuracy andMRR (0.698 versus
117 0.617). We further conducted a user study asking partici-
118 pants to complete programming tasks with the help of our
119 approach or with AnswerBot. The results show that, using
120 our approach, participants could complete tasks faster (378s
121 versus 518s).
122 In summary, the contributions of this paper are:

123 � A fine-grained taxonomy of developer needs in SO
124 posts, together with the information needed to express

125them, and the roles of the APIs in addressing the
126needs. The taxonomy is accompanied by an annotated
127data set used to derive it.
128� An approach that automatically identifies fine-
129grained developer needs and relevant information in
130SO posts.
131� An approach for the retrieval of API-related SO ques-
132tions, based on the developer information needs.

1332 DEVELOPER NEEDS IN SO POSTS

134We conducted an empirical study for understanding what
135type of developer needs are expressed in API related SO
136questions and how. Fig. 1 shows the relationships between
137the main concepts used in the paper. An SO [thread] could
138include a [question] (with a title and the body) and multiple
139[answers]. The question may express multiple [developer
140information needs]. Each [developer need] is an instance of a
141[developer need type] and it is described by [describing senten-
142ces] from the [question]. The [describing sentences] contain the
143[relevant information] for expressing the [developer need]. Each
144[relevant information] is an instance of a [relevant information
145type]. Multiple [APIs] may be mentioned in the [question] or
146[answers], and each API plays a specific [API role] in describ-
147ing the [developer need] or its solution.
148We focus on answering the following research questions:
149RQ1:What type of developer needs are present in SO questions?
150RQ2: What type of information is used to describe the devel-
151oper needs?
152RQ3:What roles do APIs play related to the developer needs?

1532.1 Study Design

154While we considered the seven categories defined by Beyer
155et al. as a starting point to our study, we performed open
156coding on a set of SO threads with the goal of refining and/
157or redefining them, as needed. Since our focus is on API-
158related questions only, we limited the scope of the “Learning”
159category to “API Usage Learning” only.
160Qualitative Analysis Method. Based on the thematic analy-
161sis framework proposed by Braun and Clarke [20], we con-
162ducted a qualitative analysis by performing open coding on
163API-related threads. We treat the developer need, relevant
164information, and API role as themes and the analysis was
165conducted collaboratively by following steps similar to
166Robillard et al. [21].
1671. Data Collection and Familiarisation. We first collected
168API-related threads from SO. Then all annotators read those
169collected threads in order to become familiar with them,
170paying specific attention to patterns that occur.

Fig. 1. Conceptual schema of our taxonomy.

2. https://stackoverflow.com/questions/2308188
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171 2. Coding on Data. Annotators analyzed the API-related
172 threads and coded those threads according to the coding
173 protocol we designed. As a result, we obtained a list of
174 codes for developer need types, relevant information types,
175 and API role types.
176 3. Generating, Reviewing and Defining Codes/Themes.
177 We first grouped codes into themes, i.e., developer need,
178 relevant information, and API role. Then we discussed the
179 distribution of codes across threads and the relationships
180 between themes (i.e., Fig. 1) and codes (i.e., Tables 2 and 4).
181 We reviewed once again all API-related threads, focusing
182 on checking whether the definitions of codes/themes are
183 appropriate, and whether the relationships between themes
184 and codes are correct. We repeated this process until the
185 results were stable.
186 Next, we elaborate on our data collection and coding
187 protocol.
188 Data Collection. We selected threads related to JDK and
189 Android APIs for this empirical study. We chose JDK and
190 Android APIs because they are popular [22] and we are
191 familiar with them. To obtain the data, we first selected
192 threads tagged with “java” and an accepted answer from
193 the SO data dump [23] and removed those that did not con-
194 tain any qualified name or aliases of APIs from JDK 1.83 or
195 Android API 274 in the title, question body, or accepted
196 answer. The aliases of APIs were derived from the qualified
197 name (e.g., StringBuffer is one derived alias for java.
198 lang.StringBuffer). To further ensure the quality of
199 threads, we ranked the threads by the number of question
200 votes and retained the top 500 voted threads. Then, we man-
201 ually removed threads that were not about APIs. The man-
202 ual removal was conducted by two students independently
203 (one PhD and one MS student, each with more than five
204 years Java and Android experience). One of the authors was
205 assigned to resolve any conflicts, although the agreement
206 between students was near perfect (i.e., Cohen’s Kappa
207 coefficient [24] of 0.92). After this step, we obtained 266
208 threads about APIs. Unlike our data set, Beyer et al. [9] used
209 500 randomly sampled posts with the tag “android” which
210 were not necessarily API related.
211 Coding Protocol for Developer Needs and Relevant Informa-
212 tion. To answer RQ1 and RQ2, we analyzed the questions
213 from the 266 threads. We preprocessed the questions from
214 HTML format to clean text using BeautifulSoup [25]. Long
215 code snippets that were wrapped by <pre><code></
216 code></pre>were replaced with a placeholder “-CODE-
217 ” during parsing. Where necessary, a “.” was added after
218 -CODE- to ensure that the following sentence splitting is

219correct. For each question, we split the text in the title and
220question body into sentences and combined them together
221because we need to annotate questions at sentence-level. As
222shown in Fig. 2, for the question5 “How to split a string in Java”
223is the first sentence and “I have a string, ”004-034556”, that I
224want to split into two strings: -CODE-.” is the second sentence.
225Fig. 2 shows an example of how we coded the questions.
226First, three of the authors (two PhD and oneMS student, each
227with more than five years Java and Android experience)
228coded the questions into developer need types through discus-
229sion and consensus. If the question expresses a developer
230need type but it does not meet the current definition of any
231type, we modify the definition of the existing type or create a
232new developer need type after discussion. If developer need
233types are changed, we re-annotate all questions again. As a
234result, one question could be classified into several developer
235need types at the same time, e.g., the SO question shown in
236the box in the introduction. We classified the question in
237Fig. 2 into developer need type “Functionality Implementation”
238(Table 1).
239Then if a question is an instance of a developer need type,
240we will check each sentence in the question for identifying
241the specific information that describes this developer need,
242which we call relevant information. The relevant information
243instances were classified and refined through card sorting.
244One sentence could be classified into several relevant infor-
245mation types of the same developer need types or different
246developer need types at the same time. If the sentence does
247not provide important information for any developer need
248type, we will annotate it as “useless” (e.g., “Thanks.”). For
249example, the three colored sentences in the Fig. 2 are all
250annotated as relevant information “Desired Functionality” for
251“Functionality Implementation” (see Table 2) and the remain-
252ing sentences are annotated as “ useless”.
253In summary, the coding for developer need types and
254relevant information was iterative. When we found that a
255question/sentence cannot be coded with an existing type,
256we created a new type or modified the definition of an exist-
257ing type. Then, we re-annotated all the questions again, to
258account for the new type or the modified definition. We fin-
259ished the coding process once we achieved saturation, i.e.,
260once no new developer need types and relevant information
261types were found.
262To further verify that our coding for developer needs and
263relevant information is correct and complete, and to mini-
264mize any bias, we asked two MS students (not involved in
265previous annotation) familiar with Java and Android to
266annotate a subset of the 266 questions with our coding by
267following our coding protocol with the codes we derived.
268First we sampled five questions for each developer need
269type based on our annotation for questions, and we got 34
270questions, after removing duplicate questions. The annota-
271tion was performed by both students independently. For
272each question, they annotated it with some developer need
273types, and they annotated each sentence with relevant infor-
274mation types corresponding to the annotated developer
275need types or “useless”. If none of the existing codes was
276suitable, they annotated the question or sentence as “New

Fig. 2. An example of coding of a SO question.

3. https://docs.oracle.com/javase/8/docs/api/java/lang/
package-summary.html
4. https://developer.android.com/reference/packages 5. https://stackoverflow.com/questions/3481828
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277 Code”. The Cohen’s Kappa agreement coefficients for devel-
278 oper need types are all above 0.6 (i.e., substantial agree-
279 ment), with a minimum of 0.62, a maximum of 1.00, and an
280 average of 0.89. The Cohen’s Kappa agreement coefficients
281 for relevant information types are also all above 0.6, with a
282 minimum of 0.66, a maximum of 1.00, and an average of
283 0.85. All developer need type codes and relevant informa-
284 tion type codes were used in this round of annotation and
285 no new codes were reported. We found the disagreements
286 often occurred when the students overlooked some parts of
287 very long questions.
288 To identify developer need instances we need to group
289 the sentences that describe the same developer need instan-
290 ces together. Note that the sentences in a question providing
291 relevant information for the same developer need type are
292 not always describing the same developer need instance.
293 First, we filtered out sentences annotated as “useless” and
294 grouped the remaining sentences. A sentence group con-
295 tains several sentences from the same question and is anno-
296 tated with relevant information types of the same developer
297 need type. A sentence may appear in different groups
298 because it may be annotated with relevant information
299 types of different developer need types at the same time.
300 For each sentence, two MS students were asked to group
301 them independently, based on the developer need type they
302 describe. The original question was provided as the context
303 when grouping. If they disagreed on the grouping, one of
304 the authors was assigned to resolve conflicts. The Cohen’s
305 Kappa agreement coefficient for sentence grouping is 0.95,
306 (i.e., nearly perfect agreement). The coding for developer
307 needs and the relevant information are providing guidance
308 for identifying developer need instances, which makes it
309 easier for participants to reach consensus. As a result, we
310 obtained 456 developer need instances described by one or
311 more sentences in the questions from the 266 SO threads.

312For example, the three colored sentences in Fig. 2 are
313grouped into two developer need instances, colored with
314orange and green, respectively.
315Coding Protocol for API Roles. To answer RQ3, we asked
316two MS students (same as above) to identify the APIs
317involved in answering the 456 developer needs and the
318roles of each involved API. Three of the authors analyzed 20
319threads and defined an initial set of codes for different API
320roles. For example, “suggested API” is the role for the APIs
321suggested by answerers to satisfy the developer need.
322The students were shown one developer need at a time
323with its original question and accepted answer of the ques-
324tion as context. The APIs could be identified from the ques-
325tion or its accepted answer. To make the annotation easier,
326we ignored the other answers of the question. An API could
327only be coded with one API role for the current developer
328need, but could be coded with different API roles for other
329developer needs. For example, “string” (i.e., java.lang.
330String) is annotated as “Context API” (Table 3) for both
331developer needs in Fig. 2.
332The students coded independently. If their role annota-
333tions for the same API in a developer need were different,
334one of the authors was assigned to resolve the conflict. Dur-
335ing coding, if an API could not be coded with any existing
336API role, we changed the definition of existing API roles or
337created new API roles, after discussion and agreement. If
338the categories were changed, the students re-coded the
339APIs again. The two coders identified 2,049 APIs in total
340(same APIs for different developer needs were treated as
341different APIs) and among them 68.6% APIs (1,406 of 2,049)
342were identified by both coders. We checked the APIs that
343were not identified by both coders. The main cause was that
344the questions or the answers in those cases were very long,
345with large code snippets, and the coders missed some APIs.
346The Cohen’s Kappa agreement coefficient for annotating

TABLE 1
Definitions and Examples of Developer Need Types (QC: Question Count, DNC: Developer Need Count)

Developer Need Type Definition SO ID Example Summary QC DNC

Functionality Implementation The developer wants to implement
specific functionality

1816673 How do I check if a file exists in Java? 182 187

Non-Functional Improvement

The developer wants to improve the
existing implementation for some
non-functional requirements, e.g.,
code quality

1306727

Is there a neater way for getting the
length of an int than this method?

32 32

Functional Improvement

The developer wants to fix an
implementation whose expected
performance is not consistent with the
actual performance without an obvious
error message

869033

I want to copy the dum to dumtwo and
change dumwithout affecting the
dumtwo. But the code above is not doing
that.

32 32

Error Handling
The developer wants to fix an
implementation with an obvious error
message

1393486
java.lang.OutOfMemoryError: GC
overhead limit 28 28

Rationale Analysis
The developer wants to understand the
internal implementation and design of
an API.

7421004
Is FileInputStream using buffers
already? 39 54

API Comparison The developer wants to compare
multiple APIs.

355089 Difference between StringBuilder and
StringBuffer

27 27

Alternative Solution The developer wants to find an
alternative of an existing solution.

54516417 Backward alternative solution for
ChronoUnit.Days.between()

9 9

API Usage Learning The developer wants to learn how/
when/where to use an API

2793150 How to use java.net.URLConnection to
fire and handle HTTP requests

87 87
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347 API roles is 0.88 (i.e., near perfect agreement). After resolv-
348 ing the conflicts, we obtained 1,932 APIs (note that the same
349 API playing a different role is considered distinct) involved
350 in the questions and answers of the 456 developer needs.
351 Note that 117 APIs are removed after resolving the conflicts.
352 Mainly, those removed APIs are APIs that were misidenti-
353 fied by participants, e.g., java.lang.StringBufer, which
354 should be java.lang.StringBuffer.

355 2.2 Results

356 2.2.1 RQ1 (Developer Need Types)

357 Table 1 shows the definitions and examples of the eight
358 developer information need types we identified, with the
359 numbers of questions where these developer need types
360 appear. The last column indicates the number of distinct
361 developer needs that belong to that type.

362Among the 456 specific developer needs we identified in
363the 266 questions, functionality implementation is the most fre-
364quent developer need type (41.0%). This implies that devel-
365opers often ask for help to implement a specific functionality.
366Among the 266 questions, 128 questions contained 1 devel-
367oper need; 93 questions contained 2 developer needs; 38
368questions contained 3 developer needs; 7 questions contained
3694 developer needs. Among the questions with more than one
370developer need (51.9%), 92.8% (128 of 138) questions address
371developer needs of different types. That is, 48.1% (128 of 266)
372questions may be classified into several developer need types
373at the same time.
374As shown in Table 1, the value ofQC is the same as DNC’s
375in six out of eight developer need types (except for function-
376ality implementation and rationale analysis). This shows
377that different developer need types have different chara-
378cteristics. For some developer need types (e.g., functionality

TABLE 2
Definitions and Examples of Relevant Information Types (SC: Sentence Count, DNC: Developer Need Count)

LIU ET AL.: API-RELATED DEVELOPER INFORMATION NEEDS IN STACK OVERFLOW 5



379 implementation and rationale analysis), the questioners may
380 mention multiple developer needs of the same type but
381 belonging to different instances in one question, e.g., the
382 question shown in Fig. 2. For other types, such as alternative
383 solution, the questioner is unlikely to inquire about alterna-
384 tive solutions for two different implementations at the same
385 time.
386 Some developer need types seem to overlap to some
387 extent, e.g., API comparison and API usage learning. How-
388 ever, each developer need type we define has a different
389 way of describing questions from other types (see Sec-
390 tions 2.2.2 and 2.2.3). These eight developer need types
391 refine the taxonomy proposed by Beyer et al. [9]. We discuss
392 in more detail at the end of this subsection how these two
393 frameworks complement each other.
394 Among the eight developer need types, the top three (i.e.,
395 functionality implementation, non-functional improvement,
396 and functional improvement) are more general than the rest
397 and they can apply to other non-API related questions.
398 Some developer need types have commonalities. Non-func-
399 tional improvement, functional improvement, error han-
400 dling and alternative solution are for developers who
401 already have a solution and want to improve/fix it. API
402 comparison, API usage learning and rationale analysis are
403 for developers who want to learn specific APIs.
404 In conclusion, questions on Stack Overflow could be
405 quite complex and contain multiple developer needs from
406 different developer need types. This is also consistent with
407 our intuition. We need a way to more accurately analyze
408 the developer needs in the questions.

409 2.2.2 RQ2 (Relevant Information Types)

410 Table 2 shows the definitions and examples of the 17 types of
411 relevant information used for describing developer needs.
412 We report how many sentences (SC) and how many devel-
413 oper needs (DNC) are described with the corresponding rele-
414 vant information. We observed that not all relevant
415 information types are used to describe all instances of a devel-
416 oper need type. For example, an API usage learning need
417 described by the sentence “how to use FileInputStream” only
418 provides relevant information for “Used Subject” without
419 “Usage Scenario”. The “Essen.” (i.e., Essential) column indi-
420 cates whether the corresponding relevant information
421 appears in the descriptions of all instances of the correspond-
422 ing developer need type.We consider the other relevant infor-
423 mation “non-essential” for a developer need type, meaning

424that it may be omitted from the description of a developer
425need of that type.
426The 456 developer needs we identified are described in
4271,027 sentences (764 unique ones) that provide relevant
428information. Each developer need is described by 2.3 sen-
429tences on average (min. 1, max. 9, median 2). These descrip-
430tive sentences constitute only 53.2% (764 of 1,436) of the
431sentences in the 266 questions providing relevant informa-
432tion. The implication is that, the developer needs from a
433question are described with only half of its sentences, on
434average. Further, we analyzed sentences providing relevant
435information related to developer needs. 75.7% of developer
436needs contain sentences providing duplicate types of rele-
437vant information, implying that we could summarize devel-
438oper needs from questions in a concise way by using
439sentences without providing duplicate types of relevant
440information.

4412.2.3 RQ3 (API Roles)

442Table 3 shows the definitions of five API roles we identified
443and the last column is the number of APIs playing that role
444in at least one instance. Suggested API is a special API role
445and it is usually played by the APIs appearing in the answer
446as part of the solution for the developer need. APIs with
447other roles could appear in both questions and the answers,
448in the question as part of the developer need description
449and referenced in the answer. Table 4 shows the relations
450between API roles and developer need types and relevant
451information. Different developer need types could share
452API roles. Some developer need types include multiple API
453roles but not all corresponding API roles must exist in their
454developer need instances. We further analyzed the relations

TABLE 3
Definitions of API Roles

TABLE 4
Relationships Between Developer Need Types, API Roles,

and Relevant Information Types

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING



455 between API roles and relevant information, which are
456 shown in the fourth column “Relevant Information”. We
457 found that APIs with a specific role tend to appear in sen-
458 tences with specific relevant information. This suggests that
459 we can design heuristic rules to determine the role of an
460 API based on the relevant information type present in the
461 sentence.
462 The 456 developer needs have 1,932 pertinent APIs in
463 total (4.24 APIs on average, min. 1, max. 34, and median 3).
464 77.4% (353 of 456) of the developer needs have multiple per-
465 tinent APIs. Not all APIs appearing in the question/answer
466 are pertinent for a developer need. The API could be men-
467 tioned only as an example or only related to one of the
468 developer needs in the question (when multiple are pres-
469 ent). The same API could be involved in different developer
470 needs by playing different roles, which implies that those
471 threads provide different information about the same API.

472 2.2.4 Comparison With Prior Taxonomies

473 We discuss here how the taxonomy we defined relates to the
474 one proposed by Beyer et al. [9]. We contend that our taxon-
475 omy extends and complements the one proposed by Beyer
476 et al. Table 5 maps our developer need types to the categories
477 from that taxonomy. There is no one-to-one correspondence
478 between the categories. Since our taxonomy is finer-grained,
479 one can consider that the categories from Beyer et al. that
480 share our developer need types are related and the relation-
481 ships are expressed by the common developer needs. Our
482 other categories can be mapped to the ones derived by Beyer
483 et al., refining them into sub-categories. Moreover, our taxon-
484 omy includes relevant information types and API roles, which
485 are not captured by Beyer et al., hence extending that work.

486 2.2.5 Summary

487 Through our systematic annotation of 266 SO threads, we
488 have identified 8 types of API-related developer needs and
489 17 types of information relevant to these developer needs.
490 In addition, for the APIs related to these developer needs,
491 we have identified the roles they play, leading to a set of 5
492 API roles.

493 2.3 Threats to Validity

494 The internal validity of our findings is dependent on
495 whether our codes for developer need types, relevant infor-
496 mation, and API roles are correct and complete. To alleviate
497 this threat we had more than one coder participating in
498 each coding activity and have reported the agreement. Our
499 data is available in the replication package [26] and the

500study may be replicated in the future, confirming the valid-
501ity of the codes. Another threat is that the categorization of
502developers needs has been done by students, not develop-
503ers with industrial experience, cf. existing studies on poten-
504tial differences [27], [28], [29]. To alleviate this threat we
505reported their Java development experience. The types
506identified by the students are not esoteric, so it is unlikely
507that more-informed coders would disagree with them.
508The external validity of our findings is dependent on the
509number of threads we used in the study. We only analyzed
510266 API-related threads, which affects generalizability. The
511findings may not generalize to other API-related questions.
512To alleviate this threat, as much as possible, we chose ques-
513tions related to two popular libraries (JDK and Android)
514with high scores and we believe they are representative of
515typical API related questions. Scaling up our analysis to
516more SO threads may lead to the identification of additional
517developer need or relevant information types. The exten-
518sion of our taxonomy is expected and desirable, but it will
519not invalidate the results we obtained. It would lead to bet-
520ter analysis tools in the future.

5213 AUTOMATED IDENTIFICATION OF DEVELOPER
522NEEDS

523We develop an approach for the automated identification of
524developer needs from threads. An overview of the approach
525is presented in Fig. 3. For a given thread from SO, we iden-
526tify the APIs mentioned in the thread (Section 3.1). Then we
527use pretrained classifiers to identify developer need types
528in the question and describing sentences providing the rele-
529vant information (Section 3.2). After that, we extract devel-
530oper needs from the question by a cluster-based approach
531(Section 3.3). Finally, we identify the APIs pertinent to each
532developer need and their roles (Section 3.4).

5333.1 API Identification

534For an API-related thread, we consider its question and its
535accepted answer for API identification. We identify APIs in
536three different places (i.e., code snippets, stack traces, text)
537in different ways from the question and its accepted answer,
538based on our observations from the empirical study. APIs
539identified from different places may play different roles in
540developer needs. For example, the API identified from a
541code snippet may be a currently used API, the API identi-
542fied from a stack trace may be an error API, and the API
543identified from text may be a context API.
544API Identification From Code Snippets/Stack Traces. In Stack
545Overflow, code snippets and stack traces are both wrapped
546in <pre><code></code></pre>.6 They can both

TABLE 5
Relationships Between Taxonomies

Our Taxonomy Beyer et al. Taxonomy

Functionality Implementation API Usage
Non-functional Improvement Review
Functional Improvement Discrepancy, API Change
Error Handling Errors
Rationale Analysis Conceptual, API Change, Review
API Comparison API Change, Discrepancy
Alternative Solution API Change
API Usage Learning Learning

Fig. 3. Overview for automated identification of developer needs.

6. An example in https://stackoverflow.com/questions/2965747
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547 contain APIs and their formats are quite different. Thus, we
548 extract APIs from them in different ways. First, we extract
549 each text wrapped in <pre><code></code></pre>
550 and classify it into three categories: code, stack trace, and
551 other. The classification is done by a list of regular expres-
552 sions designed based on empirical study data, available in
553 our replication package [26]. We extract APIs from code
554 snippets with our own implementation of Baker [30], an
555 approach to link APIs in incomplete code snippets to their
556 qualified names. Because the official implementation is not
557 available, we implemented a version of Baker by ourselves
558 and built the oracle for Java APIs. To build the oracle for
559 Baker, we used JavaPaser7 to analyze the third-party librar-
560 ies from Maven together with JDK 1.8 and Android 27. As a
561 result, the oracle contains 946,325 classes, 9,711,745 methods
562 and 3,448,472 fields for 32,238 libraries. We tested the Baker
563 implementation on a test set and the results were compara-
564 ble with those reported for the original implementation.
565 For a stack trace, we identify all APIs based on the struc-
566 ture of the stack trace by using regular expressions as well.
567 The regular expressions are shown in Table 6, which take into
568 account commonAPI name conventions (similar to [31], [32]).
569 For example, from the stack trace: 06-03 15:05:29.614:
570 ERROR/AndroidRuntime(7737): java.lang.Unsup-

571 portedOperationException 06-03 15:05:29.614:

572 ERROR/AndroidRuntime(7737): at java.util.

573 AbstractList.remove(AbstractList.java:645),
574 we extract two APIs java.lang.UnsupportedOperationException
575 and java.util.AbstractList.remove.
576 API Identification From Text. We identify APIs in text in
577 the following way. (1) Using regular expressions shown in
578 Table 6 for common API name conventions, e.g., camel-case
579 (e.g., StringBuffer), qualified name (e.g., java.lang.
580 String) and method name (e.g., String.split()); (2)
581 We consider the text wrapped in <code> as an API and
582 the text shorter than two characters or more than one word
583 will be filtered out. (3) We match the text with all APIs in
584 the given API list, including the qualified names and the ali-
585 ases of APIs. This part is optional and with the help of a
586 given API list, we could identify APIs in text which could
587 also be common words. For example, “string” in “How to
588 split a string in Java” could match with java.lang.
589 String if we provide JDK APIs for matching.
590 After we collect all APIs identified from the question and
591 the accepted answer, we remove the duplicates. Qualified
592 names and their aliases are considered duplicates, e.g.,
593 java.lang.String and String. We ignore parameters
594 for API methods because API methods mentioned in SO
595 questions are often lacking parameters. We further filter out

596APIs that match SO tag names. SO tags could represent
597some common words. For example, “BeautifulSoup” will be
598identified as an API from text because of its camel case
599name and it will be filtered out by matching with the SO tag
600“beautifulsoup”. If no APIs can be identified, then we con-
601sider this thread as not being API related and will not per-
602form the next steps for developer needs extraction.

6033.2 Relevant Information Analysis

604We use text classifiers to classify the questions into devel-
605oper need types and each describing sentence from the
606question into relevant information types.
607Text Preprocessing.Wepreprocess the text of the question as
608follows. (1) We extract the text from HTML format using
609BeautifulSoup [25]. The text in the title and the question body
610are combined together as the question text. (2) Text wrapped
611by <pre><code></code></pre> is replaced with one
612of following placeholders: “-CODE-” for code snippet,
613“-STACKTRACE-” for stack trace, “-XML/JSON-” for XML
614or Json format data, “-NUMBER-” for number or list of num-
615bers, and “-TEXT-” for plain text. The placeholder type is
616determined using regular expressions. We shorten the text as
617the text classifier underperforms for long text. Further, in the
618specific content replaced by placeholders, there are many
619unique words (e.g., custom variable names), which would
620introduce noise to the classifiers. Moreover, the placeholders
621allow the classifiers to focus on the type and the context of the
622content replaced by placeholders, rather than the specific con-
623tent. For example, “-STACKTRACE-” usually implies an
624“Error Handling” developer need type in the question and
625“An exception was thrown while I run the following code:
626-CODE-.” usually implies an “Erroneous Implementation”.
627Note thatwe record the original content replaced by the place-
628holder for later restoration. The relationships between code
629snippets/stack traces and theAPI identified from them in Sec-
630tion 3.1 are also recorded. (3) We add a placeholder “-API-”
631before each API mention in the text (identified in Section 3.1).
632If the API mention is ending with “Exception” or “Error”, the
633added placeholder is “-EXCEPTION-”. The presence of APIs
634is an important feature for some developer need types (e.g.,
635API Usage Learning, Error Handling) and relevant information
636(e.g.,Used Subject, Error Type).
637Developer Need Type and Relevant Information Classification.
638We define this task as a sentence classification and we design
639a two-phase classifier. In the first phase, we classify the ques-
640tion text into developer need types.We train binary classifiers
641for each developer need type, which classify an input ques-
642tion into two classes “Yes” or “No”, representingwhether the
643input question contains this type of developer needs or not.
644In the second phase, we classify describing sentences into
645relevant information types. For each type of relevant infor-
646mation, we train a binary classifier that classifies a sentence
647into two classes: “Yes” and “No”, representing whether this
648sentence provides this type of relevant information or not. If
649the question is classified into one developer need type, we
650use all relevant information classifiers that belong to this
651developer need type. Based on the results of RQ2 (see
652Table 2), some types of relevant information are essential for
653the related developer need types (e.g., “Used Subject” is
654essential for “API Usage Learning”). We use this finding to
655improve the sentence classification. We combine the results

TABLE 6
Regular Expressions for API Identification

Regular Expressions Matching Examples

(nw+n.)+(nw)+ java.lang.String
([A-Z](nw)+)([A-Z](nw)+)+ StringBuffer
(nw+n.)*(nw)+nðn) String.split()
(nw+n.)*(nw)+nð½nw,]+n) StringBuffer.insert(int,int)

7. https://github.com/javaparser/javaparser
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656 of the sentence classifiers from the same question together to
657 fix classification errors. For example, if a sentence is classified
658 as “Usage Scenario” and none of the sentences in the same
659 question is classified as “Used Subject”, then we will adjust
660 the classification result of “Usage Scenario” from “Yes” to
661 “No”. If a sentence can not be classified as “Yes” by any clas-
662 sifier, it will be annotated as “useless”.
663 We train multiple binary classifiers for two reasons: (1) A
664 previous study for knowledge pattern classification for sen-
665 tences of API reference documentation [33] has shown that
666 when there are many classes for sentence classification, train-
667 ing a binary-classifier for each class is better than directly
668 training a single complex classifier; and (2) Our classification
669 is a multi-label task, i.e., each question could have several
670 developer need types and each description sentence could
671 provide multiple types of relevant information. It is easier to
672 collect trainingdata for trainingmultiple binary classifiers.
673 We used FastText [34] to implement the two classifiers.
674 FastText is a fast approximation of the softmax classifier
675 designed by Facebook, which is based on n-gram features
676 and dimensionality reduction. It is fast enough that we can
677 run iterative tests quickly.
678 We asked five MS students (with more than two years of
679 Java development experience each) to annotate sentences by
680 relevant information type, in addition to those we annotated
681 in the empirical study (Section 2.1). To make the annotation
682 easier, we designed the annotation task as a binary classifier
683 as well. For each sentence, we show a candidate relevant
684 information type and the annotators only need to annotate
685 “Yes” or “No”. If a sentence of the question is annotated as
686 the relevant information type, we will consider the question
687 annotated with the developer need type that the relevant
688 informationdescribes.We used doccano [35], an online anno-
689 tation tool to support the annotation.We sampled the senten-
690 ces for each relevant information type in the following ways:
691 (1) random sampling; (2) sentences containing keywords
692 related to the corresponding relevant information (e.g.,
693 “difference between” for “Compared Subject”); (3) sentences
694 classified as positive by the classifier trained on the already
695 annotated data; (4) sentences with high text similarity (based
696 on TF-IDF) with already annotated data; (5) sentences in a
697 question that were already annotated with the developer
698 need type for this type of relevant information. There is no
699 priority between different samplingways.We took the union
700 set of the sentences selected by the five ways. The same sen-
701 tences may be sampled for different relevant information
702 types. Each sampling sentencewas annotated by twopersons
703 and a third person was assigned to resolve conflicts. The dif-
704 ferent sampling approaches were used for reducing annota-
705 tion costs and getting more annotated data. The annotated
706 data is provided in the replication package [26].

707 3.3 Cluster-Based Developer Need Extraction

708 Since a question may contain several developer need instan-
709 ces, as shown in Fig. 2, we extract the developer need
710 instances in the question via clustering.
711 First, we filter out sentences annotated as “useless” and
712 cluster the remaining ones by relevant information. A sen-
713 tence cluster contains sentences from the same question
714 with information types relevant to the same developer need
715 type, e.g., sentences annotated with “Used Subject” and

716“Usage Scenario” are in the same cluster, after clustering
717based on relevant information.
718Then we refine the clusters to separate different devel-
719oper need instances. We represent each sentence into a
720fixed-length vector by averaging the vectors of all words in
721the sentence. The vector for a word is obtained from a 100-
722dimensional Word2Vec [36] model pre-trained on the Wiki-
723pedia corpus.8 The model is tuned based on the corpus of
724all SO threads tagged with “java” by gensim [37]. The simi-
725larity between two sentences S1 and S2 is computed by
726Eq. (1). Eq. is short for Equation.

SimðS1; S2Þ ¼ ðcosðVS1 ; VS2Þ þ 1Þ=2: (1) 728728
729

730For each sentence cluster Cs, we refine the cluster in two
731phases. In the first phase, we cluster the sentences that pro-
732vide the same relevant information types. We use DBSCAN
733(Density-Based Spatial Clustering of Applications with
734Noise) [38] as the clustering algorithm.We also add all other
735sentences from the question to act as noise in the clustering.
736After obtaining the clusters, we remove all the noise senten-
737ces and obtain several non-empty clusters.
738In the second phase, we use the list of clusters SetðClusterÞ
739and we merge them. In each merging, we remove the two
740most similar clusters Cluster1 and Cluster2 from SetðClusterÞ
741that do not contain the same relevant information type
742and merge Cluster1 and Cluster2 as Clusternew and then add
743the Clusternew back to the SetðClusterÞ. We stop when
744SetðClusterÞ has only one Cluster or we can not merge any
745cluster pair. The similarity of two clusters Cluster1 and
746Cluster2 is the the highest sentence similarity between the
747sentences in the two clusters.
748Finally, we remove Clusters in SetðClusterÞ that do not
749contain all essential relevant information types for the corre-
750sponding developer need types. Each cluster left in the
751SetðClusterÞ corresponds to a developer need instance.

7523.4 API Role Identification

753Given a developer need, we first select APIs pertinent to the
754developer need as candidates. Then, we classify each candi-
755date API into an API role using rule-based classifiers.
756Candidate APIs Selection.Based on our experience, anAPI is
757relevant to a developer needDN in two cases: (1) it explicitly
758appears in the sentence of this developer need, e.g., java.lang.
759String in “How to split a string in Java”; (2) it is not explicit in
760the sentence of this developer need, but its name or the con-
761text of the API implies its relevance, e.g., the sentence “Just
762use the appropriate method: String#split().” from the answer
763of “How to split a string in Java” mentions the java.lang.
764String.splitAPI and its namealready shows the relevance.
765Then, for a developer needDN and eachAPIE in the same
766thread, identified in Section 3.1, we calculate their relevance
767score based on the location of E or the context similarity by
768Eq. (2). If DN contains the API E in any of its sentences, then
769ContainðDN;EÞ ¼ 1; otherwise, ContainðDN;EÞ ¼ 0. The
770context similarity between E and DN is calculated by Eq. (3)
771based on aWord2Vec [36] model.We representE andDN by
772averaging the vectors of all words in their description text.
773For E, the description text is the combination of all sentences

8. https://github.com/3Top/word2vec-api
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774 in the thread that mentioned the API E and all aliases of E
775 (same as Section 2.1); ForDN, the description text is the com-
776 bination of all sentences in developer need DN. The Word2-
777 Vec model is the same as we used for sentence clustering (see
778 Section 3.3). We filter out APIs with relevance score less than
779 a threshold T .

RelðDN;EÞ ¼ maxðContainðDN;EÞ; SimðDN;EÞÞ (2)
781781

782

SimðDN;EÞ ¼ ðcosðVDN; VEÞ þ 1Þ=2: (3)784784

785

786 API Role Classification. Based on the results of RQ3 (see
787 Section 2.2.3), we know the relations between API roles and
788 the relevant information (see Table 4). We designed rule-
789 based binary classifiers for each type of API role and use each
790 classifier to classify eachAPI E for developer needDN as: (1)
791 Context API, if E appears in a sentence classified as one of:
792 functionality implementation, implemented functionality, expected
793 result, actual result, rationale analysis, comparison subject, used
794 subject, current solution; (2) Currently Used API, ifE appears in
795 a sentence classified as one of: suboptimal implementation, insuf-
796 ficient implementation; (3) Error API, if E appears in a sentence
797 classified as one of: erroneous implementation, error occasion; (4)
798 Exception Type API, if E appears in a sentence classified as
799 error type and containing “Error” or “Exception” in its name;
800 (5) Suggested API, ifE only appears in the answer.
801 It is worth noting that all API role classifiers assume that
802 the developer need type must have corresponding API
803 roles. If an API is classified as having multiple API roles,
804 then we select the final role, following the priorities: Excep-
805 tion Type API > Error API > Context API > Currently Used
806 API > Suggested API.

807 3.5 Evaluation

808 As shown in Fig. 3, our approach contains four steps: API
809 identification, relevant information analysis, cluster-based
810 developer need extraction, andAPI role identification. To ver-
811 ify the effectiveness of our approach, we evaluated the main
812 parts of our approach: developer need type classification, rele-
813 vant information classification, cluster-based developer need
814 extraction, and API role identification. API identification
815 mainly consists of existingmethods and heuristic rules,which

816are not the focus of our approach, and we did not perform a
817separate evaluation for that part. The relevant information
818analysis includes developer need type classification and
819relevant information classification, which we evaluated
820separately.
821Developer Need Type and Relevant Information Classification.
822We obtained annotation data for developer need types and
823relevant information from our empirical study in Section 2.1
824and additional annotation from Section 3.2. As a result, we
825have 6,985 annotated questions for developer need classifica-
826tion and 14,718 annotated sentences for relevant information
827classification. For each developer need type and relevant
828information, we conducted 10-fold cross validation on the
829annotated data. That is, we randomly divided the annotated
830data into 10 folds and each time used 9 folds as the training
831set and the remaining one fold as test set. We trained the 8
832developer need type classifiers and 17 relevant information
833classifiers based on the official implementation of FastText on
834GitHub.9 We did not compare FastText with other baselines
835because the purpose of this evaluation is to show that FastText
836is an acceptable choice. FastText can be replaced with a more
837advanced model, based on progress in the NLP domain, in
838the future. The average precision, recall and F1 for all classi-
839fiers across the 10 folds are shown inTable 7. “P”means preci-
840sion and “R”means recall, while “F1” is the harmonicmean of
841the two. For the developer need type classification, precision,
842recall and F1 for FastText are all above 0.8, while for relevant
843information classification, they are all above 0.7 (with one
844exception).
845We attribute the lower classification accuracy on some
846relevant information to the size of the training data, e.g., the
847precision of “Comparison Scenario” is only 0.64 because it is
848not essential for API comparison (i.e., it may be missing),
849hence we only had 67 positive samples in the annotation
850data. At the same time, we also observed that our method
851does not perform well when the question body is very
852lengthy with vague descriptions.
853Cluster-Based Developer Need Extraction.We grouped a list
854of sentences providing relevant information from 266 ques-
855tions into 456 developer needs in Section 2.2.1. We used this

TABLE 7
Evaluation of Developer Need Type and Relevant Information Classification

Developer Need Type

Category P R F1 Category P R F1

Functionality Implementation 0.90 0.95 0.92 Non-Functional Improvement 0.91 0.97 0.94
Functional Improvement 0.89 0.94 0.91 Error Handling 0.92 0.97 0.95
Rationale Analysis 0.91 0.96 0.93 API Comparison 0.93 0.99 0.96
Alternative Solution 0.91 0.98 0.94 API Usage Learning 0.84 0.98 0.91

Relevant Information

Desired Functionality 0.78 0.94 0.85 Implemented Functionality 0.80 0.95 0.87
Suboptimal Implementation 0.74 0.95 0.83 Improvement 0.84 0.95 0.89
Expecting Result 0.75 0.90 0.81 Actual Result 0.82 0.95 0.88
Insufficient Implementation 0.78 0.94 0.85 Error Type 0.82 0.97 0.89
Error Occasion 0.74 0.95 0.83 Erroneous Implementation 0.80 0.99 0.88
Rationale Question 0.81 0.90 0.84 Comparison Subject 0.93 0.99 0.96
Comparison Scenario 0.64 0.88 0.73 Current Solution 0.90 0.98 0.94
Alternative Description 0.78 0.98 0.87 Used Subject 0.74 0.92 0.82
Usage Scenario 0.72 0.90 0.79

9. https://github.com/facebookresearch/fastText
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856 data as the ground truth for evaluating our developer need
857 extraction, using as input the sentences with human anno-
858 tated relevant information.
859 For each question, we obtained a list of sentence pairs
860 from its ground truth developer needs. A sentence pair con-
861 tains two sentences that share a developer need. We com-
862 pared the extracted developer needs and ground truth
863 developer needs on sentence pairs to compute the precision
864 and recall for this question. The average precision and recall
865 for all questions are 0.91 and 0.92 respectively, which indi-
866 cates that if the relevant information classification is accu-
867 rate enough, we can extract developer needs correctly.
868 API Role Identification.We randomly selected 5 developer
869 need instances for each developer need type from the 456
870 developer needs identified before, in total 40 developer
871 need instances with 145 APIs (44 for context API, 21 for cur-
872 rently used API, 64 for suggested API, 11 for error API, 5 for
873 error type API). We used the approach to identify the APIs
874 with roles for these 145 APIs. Comparing with the human
875 annotated ground truth, the average precision and recall for
876 identification of APIs roles are 77.5% and 69.0%. The preci-
877 sion and recall for context API are 73.1% and 86.4%; for sug-
878 gested API, 89.7% and 54.7%; for currently used API 61.1%
879 and 52.5%; for error API 73.3% and 100%; for error type API
880 100% and 100%. The lower accuracy for suggested API and
881 currently used API roles is caused by the fact that APIs with
882 these two roles often appear in code snippets (a limitation
883 of Baker). Another problem is that the mention of the API in
884 the text is often a common word and we did not recognize it
885 or link it correctly to its qualified name. Identifying the API
886 mentions in SO posts more accurately is not the focus here,
887 but subject of future work.
888 Summary. Our approach can accurately (83.6% precision
889 and 85.4% recall, in average) identify developer needs, rele-
890 vant information types, and API roles, in SO threads.

891 4 LARGE-SCALE SO QUESTION ANALYSIS

892 The motivation for our research is that many SO posts con-
893 tain multiple developer needs, hence the need for our detec-
894 tors. We used our tool to extract developer needs from
895 213,959 SO threads, as follows: (1) tagged with “java”; (2)
896 created time is before March 2016; (3) has at least one
897 accepted answer or one answer with at least one vote. This
898 particular SO data was also used in previous research on
899 SO question retrieval [19].
900 Our approach extracted developer needs from83.6% of the
901 questions (178,868 of 213,959). It identified 337,267 developer
902 needs, 66,074 for functionality implementation, 37,441 for non-
903 functionality improvement, 70,881 for functional improvement,
904 68,419 for error handling, 47,233 for rationale analysis, 24,402 for
905 API comparison, 11,570 for alternative solution and 11,247 for
906 API usage learning. Functionality implementation is the most
907 common need, followed by functional improvement and error
908 handling, which is consistent with our intuition. Developers
909 often ask for help on SO for implementing specific functional-
910 ity or debugging an existing implementation. As opposed to
911 functionality implementation,API usage learning is the least com-
912 mon. The reason may be that most of the questions on SO are
913 task-oriented. The problem for developers is that they do not
914 knowwhich API to use, not how to use a specific API.

915For 106,026 questions with multiple developer needs, we
916found that in 66.4% of the questions (70,387 of 106,026), at
917least one sentence provides relevant information for differ-
918ent developer needs at the same time. We observed two pat-
919terns for describing multiple developer needs in a question.
920One is sequential, where developers describe different
921developer needs in turn, and the other is interrelated where
922multiple needs are mentioned in parallel.
923Further, 66.3% of the developer needs are not included in
924the sentences from the title. For questions with one devel-
925oper need, the developer needs from 63.5% questions do
926not contain the sentences from title. Because sometimes the
927title is too vague and low quality and does not reflect the
928developer needs of the developer in detail, e.g., in the ques-
929tion with title “Simple data thread question - java”.10 For
930questions with multiple developer needs, only 9.5% of the
931questions contain sentences in the title for describing all
932needs. The other 90.5% questions contain at least one devel-
933oper need that is not described in the title. Sometimes it is
934hard to express multiple developer needs in a short title,
935which leads to some developer needs being described in the
936body of a question only, e.g., the developer need “ I also
937want to check if the string has ’-’ in it.” is not reflected by
938the title “How to split a string in Java” of the question.11

939We conclude that a large proportion of SO threads refer
940to multiple developer needs and in 90% of these cases, titles
941do not describe all the needs. This observation has implica-
942tions on using question titles when retrieving related ques-
943tions, as they may have insufficient information.

9445 RELEVANT QUESTION RETRIEVAL

945To show the usefulness of our taxonomy and automated
946identification of developer needs, we design an approach
947for the retrieval of API-related questions for a given query,
948based on developer needs.

9495.1 Retrieval Approach

950The main idea of our retrieval approach is that we match the
951user’s query with the question at the granularity of devel-
952oper needs, not just the title of the question or the whole
953question body. The retrieval approach has two parts, an off-
954line part for developer needs extraction, and an online part
955to retrieve a set of questions related the given query.
956For the offline part, wefirst collect questions to be retrieved
957as a question corpus and extract developer needs from ques-
958tions in the corpus. At the same time, we train a TF-IDFmetric
959using gensim [37] based on the question corpus. Each ques-
960tion is treated as a document and preprocessed in the same
961way as described in Section 3.2. The TF-IDF metric measures
962the importance of aword in the corpus.
963For the online part, we define the relevance between a
964given query q in natural language and an API-related ques-
965tionQ, using the extracted developer needs, as a linear com-
966bination of two similarity measures, (see Eq. (4)). First, we
967calculate the relevance between the query q and each devel-
968oper need DN (i.e., Simtextðq;DNÞ) in the question Q, and
969select the DN most relevant to q. Then we use the relevance

10. https://stackoverflow.com/questions/4719146
11. https://stackoverflow.com/questions/3481828
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970 between q and DN as the relevance between q and Q. When
971 calculating the relevance between q and DN, both text simi-
972 larity and API similarity are considered and weighted by
973 two weightsW1 andW2 respectively (See Eq. (4)).
974 We convert q and DN into bags of words Wq and WDN
975 respectively after stop word removal and stemming. An
976 asymmetric text similarity Simtextðq! DNÞ between the
977 query q and the developer need DN is computed by Eq. (5).
978 Simðwq;WDNÞ is computed as maxwDN2WDN simðwq; wDNÞ
979 where simðwq;wDNÞ is the cosine similarity of two vectors of
980 wq and wDN normalized to the range between 0 and 1. That is,
981 for a word wq in the query q, we select a word fromDN that
982 has the closest semantics and use the similarity score between
983 wq and the selected word as the similarity between wq and
984 DN. The importance of each word wq in the query q is differ-
985 ent. We use the TF-IDF value to measure the importance of
986 wq. Intuitively, the most important word in the query should
987 carrymoreweightwhen calculating relevance.
988 The symmetric text similarity Simtextðq;DNÞ between the
989 query q and the developer need DN is computed as Eq. (6),
990 which is the average of the two asymmetric text similarities
991 between q and the developer needDN.
992 The API similarity is calculated with Eq. (2) using the
993 number of APIs that appear in the query q and the devel-
994 oper need DN at the same time. APIq is the set of APIs iden-
995 tified from the query q and APIDN is the set of APIs
996 involved in DN.

Relðq; QÞ ¼ max
DN2Q

W1 � Simtextðq;DNÞ þW2 � SimAPI ðq;DNÞ
(4)

998998

999

Simtextðq! DNÞ ¼
P
wq2Wq TFIDFðwqÞ � Simðwq;WDNÞP

wq2Wq TFIDFðwqÞ10011001
(5)10031003

1004

Simtextðq;DNÞ ¼ ðSimtextðq! DNÞ þ SimtextðDN ! qÞÞ=2
(6)

10061006

1007

SimAPI ðq; DNÞ ¼ jAPIq \ APIDN j=jAPIqj: (7)10091009

1010

1011 Based on the relevance between the query and each ques-
1012 tion in the question corpus, the questions in the corpus are
1013 ranked and the top-N ranked questions are returned as the
1014 relevant questions for the query.
1015 The similarity measures in our approach (Eqs. (5) and
1016 (6)) are related to the ones used by AnswerBot [19], a tool
1017 for the retrieval and summarization of SO posts. The meas-
1018 ures used by AnswerBot directly compute the text similarity
1019 between the query and the question represented by the title
1020 as the score for ranking. In contrast, our approach uses the
1021 developer needs, not the title of the question. Further,
1022 AnswerBot uses IDF as the weight in Eq. (6) and we use TF-
1023 IDF as the weight, because the developer needs are usually
1024 longer than the title and important word may have higher
1025 frequency. In addition, we also use the API-similarity, com-
1026 pared to AnswerBot, that only uses text similarity, because
1027 we focus on API related question.

1028 5.2 Evaluation

1029 We compare our retrieval approach with AnswerBot [19]
1030 and we refer to it as baselinetitle.

1031We used the implementation of baselinetitle from the rep-
1032lication package12 of AnswerBot. Since we want to compare
1033the retrieval using the complete question (title and body),
1034not just the title, we have modified baselinetitle and obtained
1035its variant baselinefull , which uses the title and the body of a
1036question together, when calculating similarity to a query.
1037Data.We obtained the 100 SO questions that were used to
1038evaluate AnswerBot from the authors’ replication package.
1039Then we manually removed questions that were not API-
1040related and obtained 64 for our evaluation. AnswerBot han-
1041dles any type of question, as it relies on textual similarity
1042only, whereas our approach focuses on API-related ques-
1043tions only. We used the same 213,959 questions from
1044Section 4 as the retrieval corpus. This corpus does not
1045include the 64 questions used as retrieval tasks. We further
1046used the developer needs extracted from these questions
1047(see Section 4) for retrieval with our approach.
1048Protocol. For each of these 64 retrieval tasks, we used the
1049title of the question as the query and retrieved the top 10
1050results using baselinetitle, baselinefull, and our approach. We
1051merged the search results for the same task and removed
1052duplicate questions. Then we invited 8 participants (MS stu-
1053dents with more than three years of Java development expe-
1054rience each) to assess the relevance of the results. All results
1055retrieved for a task were assessed by the same two partici-
1056pants independently. When assessing the retrieved results
1057for a task, participants were asked to read the SO threads
1058for the task carefully to ensure they understood the task.
1059They judged the relevance of each retrieved question to the
1060task, i.e., whether the retrieved question is a hit for the task.
1061Note that a related question does not need to exactly match
1062the task. All retrieval results for the same task were shuffled
1063before assessment and participants did not know which
1064approach retrieved the result. If the assessment of two anno-
1065tators for the same retrieved result was inconsistent, a third
1066annotator was assigned to produce an additional judgment,
1067and the final annotation was determined based on majority.
1068The agreement between the judgments was substantial (i.e.,
1069Cohen’s Kappa coefficient [24] of 0.684).
1070Results. Based on the judgments we compute the Top@1,
1071Top@5, and Top@10 accuracy measures, which gives the
1072average of how many results returned in the top 1, 5, or 10
1073(respectively) are relevant. We also use MRR (Mean Recip-
1074rocal Rank) [39] to compare the approaches, as it reflects the
1075ranking of the first relevant questions in the returned
1076results. These measures are used by previous work that
1077evaluated AnswerBot and are commonly used measures in
1078information retrieval. In each case, higher values represent
1079a better performance. The measures are shown in Table 8.
1080Our approach achieves the best results for all metrics, while
1081baselinefull the worst. We argue that the main reason
1082explaining the results is that, although the question bodies
1083contain useful information, they also contain a lot of noise,
1084which hampers the retrieval. Using the content of the ques-
1085tion body did not bring improvement, especially when the
1086query is a short title. Our approach uses the developer
1087needs extracted from questions, which arguably are less
1088noisy than other information in the question bodies.

12. https://github.com/XBWer/AnswerBot.git
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1089 5.3 User Study

1090 In order to further show how our approach can help devel-
1091 opers, we conduct a user study by asking participants to
1092 complete programming tasks with the help of our approach
1093 and the help of a baseline.
1094 Data.We selected 6 Java programming exercises shown in
1095 Table 9 from Practice-it13 as the tasks for participants to com-
1096 plete. Those tasks cover different domains, such as string oper-
1097 ations, file reading and writing, lists, and sets. We ensure that
1098 some JDK APIs are involved in each programming exercise
1099 solutions. We randomly divided the 6 tasks into two roughly
1100 equivalent groups (TA and TB) according to difficulty.
1101 Our Approach and Baseline. We only use baselinetitle from
1102 Section 5.2 as the baseline, because the experiment showed
1103 that it outperforms baselinefull. We developed web pages
1104 for both our approach and the baseline. According to the
1105 query provided by the user, the web pages will display the
1106 titles of the top-100 most relevant questions obtained by our
1107 approach or the baseline. We show a summary for each
1108 question in the search results. For our approach, the sum-
1109 mary of a question is the developer need most relevant to
1110 the query in each question. For the baseline, the summary
1111 of a question is the first 200 characters of the question body.
1112 Protocol. We asked 10 Master students with 1–3 years of
1113 Java programming experience to participate in the study. We
1114 conducted a pre-experiment survey on their Java program-
1115 ming experience and divided them into two roughly equiva-
1116 lent groups (GA and GB) based on the survey. For GA,
1117 participants complete TA with the baseline and TB with our
1118 approach. For GB, participants completeTBwith the baseline
1119 and TA with our approach. When completing a task, partici-
1120 pants must submit the complete code for each task and the
1121 code is reviewed by the authors to confirm its correctness.
1122 Participants can write their own queries and search multiple
1123 times with our approach or the baseline. We will record the
1124 time they need to complete the task. If a participant does not
1125 complete the task within 15 minutes, the participant will stop
1126 and the completion timewill be recorded as 15minutes.
1127 After the completion of their tasks, the participants were
1128 interviewed and were asked to describe how they used the
1129 SO retrieval tools and what issues they encountered, if any.
1130 Results.We received 54 solutions that were completed on
1131 time. We checked the participants’ submitted code for each
1132 task and evaluated their correctness by comparing with the
1133 ground truth solution. From a total of 54 submitted solutions,
1134 we received 6 incorrect solutions (3 using our approach and 3
1135 using the baseline), mainly because participants did not
1136 understand the task correctly. We removed those incorrect
1137 solutions from the following analysis.

1138Fig. 4 shows the participants’ completion time using our
1139approach and the baseline. Using our approach, participants
1140completed the tasks 27.0% faster (378s versus 518s on average)
1141compared to the baseline. In the six tasks, except the T4, using
1142our approach is faster than using the baseline. T4 is an excep-
1143tion is mainly because some useful questions for T4 rank
1144higher when using the baseline. We used Welch’s t-test [40]
1145for verifying the statistical significance of the difference
1146between our approach and the baseline on completion time.
1147The difference is not statistically significant (p ¼ 0:06).
1148The feedback we received from participants shows that
1149when using the baseline they usually spent a lot of time to
1150check whether the questions shown in the search results are
1151relevant to their query. They often find that it does not meet
1152their needs after reading the description of a question in
1153detail. Conversely, the summary of the developer needs dis-
1154played by our approach can help them judge whether the
1155question is relevant faster without reading the question in
1156detail.
1157We conclude that using our approach, which retrieves
1158questions based on developer needs, decreases the amount
1159of time developers need for completing programming tasks.

11605.4 Threats to Validity

1161A threat to the internal validity is related to the subjective
1162judgment of the annotators during data annotation. To alle-
1163viate this threat, we follow commonly used data analysis
1164principles, such as, multiple annotators, conflict resolution,
1165and reporting agreement coefficients, where appropriate.
1166Another threat to the internal validity of the user study is
1167related to individual differences between the 10 students.
1168To alleviate this threat, we conducted a pre-experiment sur-
1169vey about participants’ Java programming experience and
1170divided them into two roughly equivalent groups based on
1171the survey. The 6 tasks were divided into two roughly
1172equivalent groups, according to difficulty as well. We con-
1173ducted a crossover study and adopted a balanced treatment
1174distribution for the groups. Another threat is related to the
1175prior knowledge of students. Depending on the knowledge
1176that students have, they may be able to solve tasks without
1177further searching with a tool. To alleviate this threat, we
1178asked participants to search at least once when completing
1179a task with our approach or the baseline.
1180A threat to the external validity of our evaluation and
1181user study is related to the limited number of subjects (e.g.,
1182questions, tasks, and participants) considered in the evalua-
1183tion and user study. The evaluation and user study may not
1184generalize to broader development scenarios.

11856 DISCUSSION

1186Discussions on SO are often rich in information and can be
1187quite complex. Existing research has treated the entire
1188thread/question as plain text and generated coarse-grained
1189classifications. We posit that by analyzing the developer
1190needs with relevant information and API roles involved in
1191SO discussions, we can achieve a deeper understanding of
1192the semantics of SO discussions. This is a crucial step
1193towards converting SO discussions from unstructured natu-
1194ral language into structured knowledge enabling us to make
1195better use of the information contained in these discussions.

TABLE 8
Top@K Accuracy and MRR of Our Approach and the Baseline

Approaches in Relevant Question Retrieval

Approach Top@1 Top@5 Top@10 MRR

Baselinetitle 0.484 0.797 0.828 0.617
Baselinefull 0.438 0.734 0.797 0.568
Our Approach 0.625 0.828 0.859 0.698

13. https://practiceit.cs.washington.edu/
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1196 Multiple applications are possible using such structured
1197 information. Section 5 has already shown one of the possible
1198 applications, i.e., retrieving API-related questions based on
1199 developer needs. Other possible applications are as follows.
1200 (1) Supplementing API reference documentation with real
1201 developer needs and corresponding solutions. The scenario-ori-
1202 ented knowledge about the same API is gathered according
1203 to the developer needs. Developers can explore scenario-
1204 oriented knowledge about an API based on different
1205 aspects, such as the developer need types, API roles.
1206 (2) Relevant SO question recommendation for a given question,
1207 with relevance established based on shared developer needs and
1208 API roles. Developers can investigate relevant SO questions
1209 according to their interests. For example, for a functionality
1210 implementation question, developers may be concerned
1211 about API comparison questions comparing the suggested
1212 APIs with other alternative APIs or error handling questions
1213 involving the suggestedAPIs as error APIs.
1214 (3) Explaining API recommendation results based on a query,
1215 highlighting the developer need related to the query and the recom-
1216 mended APIs. Developers can understand the relationship
1217 between a recommended API and the query based on the
1218 developer need provided, so as to select the appropriate
1219 API more accurately and quickly.

1220 7 RELATEDWORK

1221 Previous research has categorized Stack Overflow content.
1222 Treude et al. [4] identified ten categories of SO questions: i.e.,
1223 how-to, discrepancy, environment, error, decision help, conceptual,

1224review, non-functional, novice, noise. Nasehi et al. [41] described
1225SO question types along two dimensions: (1) the main tech-
1226nology or construct that the question revolves around and
1227usually can be inferred from the question tags; (2) the main
1228concerns of the questioners and what they wanted to solve
1229(i.e., Debug/Corrective, Need-To-Know, How-To-Do-It, and Seek-
1230ing-Different-Solution). Allamanis et al. [16] used topic model-
1231ing to uncover question categories and identified five
1232question categories: Does not work, How/Why something works,
1233Implement something, Way of using, and Learning. Beyer et al.
1234[18] identified eight SO question types: How to...?,What is the
1235Problem...?, Error...?, Is it possible...?,Why...?, Better Solution...?,
1236Version...?, and Device...?. In a similar study, Rosen et al. [15]
1237manually investigated 384 mobile-related posts and catego-
1238rized them into threemain categories:How,What, andWhy.
1239These studies tend to gloss over the complexity of SO
1240questions, in particular the fact that they may express multi-
1241ple concerns of a developer. To address this gap, we pro-
1242pose a fine-grained taxonomy of developer needs in SO
1243posts, together with the information needed to express
1244them, and the roles of the APIs in pertinent to the needs.
1245In addition, several studies have analyzed the discus-
1246sions around domain-specific topics on Stack Overflow,
1247such as security [14], mobile development [15], Android
1248testing [10], requirements engineering [11], and configura-
1249tion-as-code [13]. In contrast, our focus is on API-related SO
1250questions, orthogonal to the application domain.
1251Many researchers have proposed applications based on
1252Stack Overflow data to help developers, e.g., by building a
1253question-answering system based on question-and-answer
1254pairs [42], by integrating Stack Overflow post recommenda-
1255tions into the IDE [43] and throughAPI recommendations [44].
1256In addition to AnswerBot [19], several approaches were
1257previously proposed for retrieving information from Stack
1258Overflow [45], [46], [47], [48]. These approaches focus on
1259retrieving entire posts (as opposed to related questions) and
1260ignore the explicit developer needs.
1261Other studies have targeted mining knowledge from Stack
1262Overflow. For example, Wong et al. [49] mined code snippets
1263and their descriptions from Stack Overflow to support com-
1264ment generation for similar code snippets. Zhang et al. [50]
1265developed BDA (Bing Developer Assistant) to recommend
1266sample codemined fromGitHub and Stack Overflow. Treude
1267et al. [51] used a machine-learning model to identify insight
1268sentences in Stack Overflow posts that could be used to aug-
1269ment API reference documentation. Xu et al. [19] proposed
1270AnswerBot to summarize the answers to a question. Uddin
1271et al. [52] developed a tool, Opiner, to present summaries of
1272opinions about an API from Stack Overflow. They focusFig. 4. Completion time for our approach and baseline.

TABLE 9
Tasks for User Study

ID Task Name Summary Group

T1 plusScores Reads students’ score records and calculate the proportion of plus scores for each student TA
T2 readEntireFile Reads a file and returns the entire text contents of that file as a String TA
T3 mostCommonNames Reads a file that contains several names in each line and find names that occurs the most

frequently in each line of that file
TA

T4 inputStats Reads a file and report various statistics about the file’s text, e.g., the number of lines in the file,
the longest line

TB

T5 removeDuplicates Reads an ArrayList of Strings and eliminates any duplicates from this list TB
T6 countUnique Reads List of integers and returns the number of unique integer values in the list by using Set TB
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1273 on extracting API-related opinion sentences from Stack
1274 Overflow posts and summarizing them into several aspects
1275 (e.g., performance, usability). Unlike them, we focus on ana-
1276 lyzing the developer needs in the questions and the role that
1277 the API plays in different developer needs.

1278 8 CONCLUSION AND FUTURE WORK

1279 Our new taxonomy, focuses onAPI-related questions in Stack
1280 Overflowand defines fine-grained developer needs and perti-
1281 nent information, complementing existing frameworks, while
1282 addressing their gaps. API-related SO questions describe
1283 such developer needs with specific types of information,
1284 while the pertinent APIs play various roles in the answers.
1285 These aspects are also captured by our new taxonomy.
1286 We found that the fine-grained developer needs and rele-
1287 vant information, together with API roles in SO threads, can
1288 be identified automatically with high accuracy, using a
1289 combination of heuristic-based and supervised learning
1290 approaches. We argue that these elements capture the essen-
1291 tial information of SO questions. A practical application of our
1292 taxonomy is the automated retrieval of SO questions, based
1293 on the automatically extracted developer needs and API roles.
1294 A comparison with state-of-the-art baseline approaches,
1295 which use textual similarities, supports our argument.
1296 In the future we will focus on improving our tools and
1297 the retrieval approaches, as well providing additional API
1298 knowledge services based on the identification of API-
1299 related developer needs in Stack Overflow.

1300 9 DATA AVAILABILITY

1301 All the data used in the empirical studies is included in the
1302 replication package [26].
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