
Searching StackOverflowQuestions with Multi-Faceted
Categorization

Mingwei Liu∗
School of Computer Science, Fudan

University
Shanghai, China

17212010022@fudan.edu.cn

Xin Peng∗
School of Computer Science, Fudan

University
Shanghai, China

pengxin@fudan.edu.cn

Qingtao Jiang∗
School of Computer Science, Fudan

University
Shanghai, China

qtjiang14@fudan.edu.cn

Andrian Marcus
Department of Computer Science,
The University of Texas at Dallas

Richardson, Texas, USA
amarcus@utdallas.edu

Junwen Yang∗
School of Computer Science, Fudan

University
Shanghai, China

15212010024@fudan.edu.cn

Wenyun Zhao∗
School of Computer Science, Fudan

University
Shanghai, China

wyzhao@fudan.edu.cn

ABSTRACT
StackOverflow provides answers for a huge number of software
development questions that are frequently encountered by develop-
ers. However, searching relevant questions in StackOverflow is not
always easy using the keyword based search engine provided by
StackOverflow. A software development question can be character-
ized by multiple attributes, such as, its concern (e.g.,configuration
problem, error handling, sample code, etc.), programming language,
operating system, and involved middleware, framework, library and
software technology. We propose a multi-faceted and interactive
approach for searching StackOverflow questions (called MFISSO),
which leverages these attributes of the questions. Our approach
starts with an initial keyword-based query and extracts a multi-
faceted categorization from all the candidate questions using natural
language processing and data mining. It then allows developers
to iteratively refine the search results through an interactive pro-
cess. We evaluated an implementation of MFISSO in a controlled
experiments with 20 computing students, solving ten software de-
velopment tasks using StackOverflow. The experiment shows that
MFISSO can help developers find relevant questions faster and with
higher accuracy.

CCS CONCEPTS
• Information systems → Information retrieval; • Software
and its engineering → Software maintenance tools;

KEYWORDS
Information Retrieval, StackOverflow, Multi-faceted Categorization

∗Also with Shanghai Key Laboratory of Data Science, Fudan University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware ’18 , September 16, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6590-1/18/09. . . $15.00
https://doi.org/10.1145/3275219.3275227

ACM Reference Format:
Mingwei Liu, Xin Peng, Qingtao Jiang, Andrian Marcus, Junwen Yang,
and Wenyun Zhao. 2018. Searching StackOverflow Questions with Multi-
Faceted Categorization. In The Tenth Asia-Pacific Symposium on Internetware
(Internetware ’18), September 16, 2018, Beijing, China. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3275219.3275227

1 INTRODUCTION
Question/answer sites, such as, StackOverflow1 are more and more
used by professional software developers and novices alike, for
obtaining answers to their software development questions. Stack-
Overflow provides answers for a huge number of software devel-
opment questions that are frequently encountered by developers.
The StackOverflow dump as of January 2016 contains 10,789,362
questions and 17,650,222 answers. Topics of these questions range
widely from syntax of programming languages and application
programming interfaces (APIs), to version control systems or error
fixing.

Before posting a new question on StackOverflow, developers
typically search for existing questions (and their answers), which
approximate the problem they are facing. The common way to
search for existing StackOverflow questions is by using the keyword
based search engine provided by StackOverflow, which searches
the titles, content, and tags of questions. Finding the best keywords
to retrieve the most relevant questions is often a daunting task for
developers, especially the novices, when exploring a new problem.
They often need to spend a lot of time trying different sets of
keywords and identifying the desired questions from a long list of
candidate results. For example, if a developer wants to know how
to implement the function that creates the Lucene index for text
search, then she may search questions with the keywords “Lucene”,
“create”, “index”, “search”. The query will return more than 1,093
results and the right question is ranked on the 53rd position among
the results.

StackOverflow questions can be characterized by several at-
tributes, expressed implicitly or explicitly in their title, content
or tags. For example, most questions express a concern (i.e.,the

1http://stackoverflow.com

https://doi.org/10.1145/3275219.3275227
https://doi.org/10.1145/3275219.3275227

Internetware ’18 , September 16, 2018, Beijing, China Mingwei Liu et al.

aim of the question), such as, finding sample code, system config-
uration method, solution of an encountered error, explanation of
phenomenon, etc.In addition to its concern, a question can also be
categorized based on other attributes, such as, the involved topics,
programming language, operating system, database, development
framework, etc.We argue that categorizing the results of a search
based on these attributes will help users find their answers easier.

Based on this conjecture we propose a multi-faceted and inter-
active approach for searching StackOverflow questions. A facet
corresponds to an attribute relevant to the targeted domain and the
faceted search allows users to explore the desired information from
search results organized according to multiple categories [9, 20]. For
the purposes of this investigative research, we define eight facets for
StackOverflow questions, i.e.,Concern, Language, Operating System,
Database, Development Tool, Middleware and Framework, Library
and Software Technology, and Topic. These facets cover the majority
of StackOverflow questions. Our approach allows for the definition
of additional facets and the extension of the existing ones. All the
facets, except Topic, are generated by preprocessing all the existing
questions using natural language processing (NLP) techniques (we
call them static facets). The Topic facet is a kind of dynamic facets
that is generated at the time of retrieval using data mining, based
on candidate results (i.e.,questions).

Our multi-faceted search approach starts with an initial keyword-
based query issued by a user when searching for StackOverflow
questions. The retrieved questions are categorized based on the
defined multi-facets. Leveraging the multi-faceted categorization,
the developer iteratively refines the searching results via an inter-
active process. In each iteration, the developer chooses the desired
categories in some facets and the candidate results, while the multi-
faceted categorization is updated for the next iteration. For example,
for the Lucene index creation problem described above, a developer
can easily identify the right question by choosing the “sample code”
category from the concern dimension, the “Lucene” category from
the library and software technology dimension, and the “search,
index” category from the topic dimension. The relevant question is
ranked first in this final category, which makes it easier to locate.

We implemented the proposed approach as a Web-based tool
called MFISSO (Multi-Faceted and Interactive Searching of Stack-
Overflow) and conducted a controlled experiment to evaluate the
approach and get feedback on the usability of the tool. Twenty
computing students were asked to find relevant StackOverflow
questions for ten development tasks, using MFISSO and the Stack-
Overflow search, respectively. The results of the experiment indi-
cate that MFISSO can help developers find the relevant questions
quicker and more accurately than just using the StackOverflow
search. In order to complement the results of the experiment, we
replicated the searches performed by the subjects and simulated
the user actions, and performed an analytical evaluation based on
the theoretical usage models of MFISSO and the StackOverflow
search. The results are consistent with the controlled experiment
and indicate that one can find the relevant questions in fewer steps
with MFISSO than with the StackOverflow search.

The rest of this paper is organized as follows. Section II presents
related work on program exploration and information seeking, and
on the use of StackOverflow. Section III describes the proposed
approach, while Section IV describes MFISSO’s implementation.

Section V presents the controlled experiment and the analytical
evaluation. Section VI concludes the paper and outlines future work.

2 RELATEDWORK
There have been numerous empirical studies on StackOverflow
focusing on different aspects. Barua et al. [2] use latent Dirichlet
allocation (LDA) to automatically discover the main topics present
in developer discussions of StackOverflow. Their results show that
the topics range widely and the most popular topics are web devel-
opment, mobile applications, Git, and MySQL. Wang et al. [21] also
use LDA to find the various kinds of topics asked by developers
and identify five topics (miscellaneous, web document, large code
snippet, stack trace, and user interface). These works relate to our
research in as much as we also identify topics from StackOverflow
questions, but with different purpose. Also, as explain in the fol-
lowing section, we chose to use semantic clustering, rather than
LDA for topic extraction.

Bazelli et al. [3] explore the personality traits of StackOverflow
authors by categorizing them into different categories based on
their reputation. They find that the top reputed authors are more
sociable and interactive with others. Nasehi et al. [14] conduct a
qualitative analysis of well-received StackOverflow answers to iden-
tify characteristics of effective code examples. They find that the
explanations accompanying examples are as important as the ex-
amples themselves. Some researchers propose approaches that can
recommend for developers useful information from StackOverflow.
Ponzanelli et al. [15] develop an Eclipse plug-in called PROMPTER
to recommend StackOverflow discussions that are relevant to the
current context in the IDE (Integrated Development Environment).
Wang et al. [22] propose an approach that uses social network
analysis and topic mining to recommend StackOverflow posts that
are relevant to API design-related issues to help API designers to
better support developer needs. Guerrouj et al. [8] propose an ap-
proach that summarizes the use and purpose of code elements in
StackOverflow posts based on the context that surrounds the code
elements. These works focus only on code examples in StackOver-
flow questions/answers or questions that are relevant to specific
APIs.

Other researchers proposed approaches for searching code and
programming resources on the Web. Rahman et al. [19] proposed
an Eclipse IDE-based web search solution that can recommend on-
line resources relevant to encountered programming problems by
combining web search engines and StackOverflow search engine.
We envision that such approaches can enhance in the future with
the multi-facet idea we are proposing and evaluating in this paper.
Mcmillan et al. [12] develop a code search system called Portfolio
that supports programmers in finding relevant functions and visu-
alizing dependencies of the retrieved functions. Portfolio combines
various NLP and indexing techniques with PageRank and spreading
activation (SAN) algorithms. Li et al. [10] develop an Eclipse plug-
in called amAssist for searching online programming resources
that can monitor developerâĂŹs working context and integrate the
context in the online search process. amAssist integrates Google
custom search engine to search popular programming websites.
Different from this work, we provide a multi-faceted categorization
and support an interactive process for searching StackOverflow

Searching StackOverflowQuestions with Multi-Faceted Categorization Internetware ’18 , September 16, 2018, Beijing, China

Figure 1: Approach Overview

questions. Common with some of these works is the use of NLP
techniques to process the queries and result.

Related to our research is also the rich body of work on us-
ing information retrieval to support concept/feature/bug localiza-
tion [11] [6]. In that body of work, developers issue keyword based
queries and retrieve elements of the source code, just as we try
to retrieve StackOverflow questions. Most related is the work of
Poshyvanyk et al. [16, 18], which generates a labeled concept lat-
tice based on the ranked results returned by IR-based search for
developers to further determine the relevance of candidate results
by examining their labels. In contrast, we categorize the results
based on the multi-facets. The use of multi-faceted categorization is
inspired by the work of Wang et al. [20], which proposed an inter-
active feature location approach that extracts and mines multiple
facets from candidate program elements by source code analysis. In
contrast, in this work we define a set of facets based on the textual
content of StackOverflow questions and use NLP to generate the
multi-faceted categorization.

3 APPROACH
Our approach includes two phases, i.e.,preprocessing and interac-
tive searching. In this section, we first present an overview of the
approach and then define the eight facets used in our approach.
After that, we present the details of two key steps, i.e.,static facet
analysis during preprocessing and facet extraction and mining dur-
ing interactive searching.

3.1 Overview
Figure 1 presents an overview of our approach, showing the main
steps of the two phases. The user icons indicate interaction with
developers.

The purpose of preprocessing is to build an index for keyword-
based searching and extract static facets for multi-faceted catego-
rization. To build the index, our approach takes as input all the
StackOverflow questions with their answers and uses a text-based
search engine (i.e.,Apache Lucene2 in our current implementation).
To extract static facets, our approach analyzes the syntactic struc-
tures of the sentences of each question and its answers using the
Stanford NLP toolkit. The syntactic structures are then matched
against a set of syntactic patterns that we defined based on the
analysis of StackOverflow questions. Based on the matching, the
category of each question on each static facet is determined and
stored.

The interactive searching process starts with an initial keyword-
based query specified by the developer. Based on the query, an initial

2http://lucene.apache.org

set of search results (i.e.,questions) is returned using keyword-based
searching based on the index files. Then, our approach automati-
cally extracts a multi-faceted categorization from all the candidate
questions based on preprocessed static facets and the Topic facet
that is dynamically generated at retrieval time. Based on the multi-
faceted categorization, our approach sorts and groups the candidate
questions. The developer examines the sorted and grouped results
following the multi-faceted categorization. She can finish the search
process if she finds the desired questions. Otherwise, she can choose
to further refine the candidate questions by selecting categories
on the facets of interest. The candidate questions are then refined
based on the selected categories and a new iteration of searching is
started based on the refined results.

Table 1: Facets and Facet Categories

Facet Facet Categories

Concern Configuration, Error, Sample Code, Explana-
tions, Design, Algorithm, Implementation

Language Java, C#, Ruby, CSS, Html, C++, C, JavaScript,
PHP, Python, SQL, VB, Matlab

Operating
System

Windows, Linux, iOS, OS X, Unix, Android,
Ubuntu

Database MySQL, Oracle, MongoDB, SQLite, PostgreSQL,
SQL-Server

Development
Tool Eclipse, XCode, Git, Visual-Studio, Maven, SVN

Middleware
and Framework

Tomcat, .NET, Django, AngularJS, Node.js,
Spring, LINQ, WCF, Qt, CakePHP, Grails, Lar-
avel, ExtJS, Java EE, MFC, Apache

Library and
Software

Technology
jQuery, Swing, GWT, Ajax, RegEx, JSON, XML,
JSP, Http, URL, Dom, UML, Image, Video,
Lucene

Topic Labels generated from text clustering of candi-
date questions

3.2 Facets Definition
We manually analyzed 1,100 randomly selected questions from
StackOverflow in order to identify the main attributes that describe
them. Based on our analysis, we identified eight attributes, which
define the facets used by our approach. While these facets describe
a majority of StackOverflow questions, there are likely questions
in StackOverflow that are not completely described by these facets.
To mitigate such issues, our approach allows for extension of facets,
as well for addition of new categories in each facet. As such, the
approach can be easily updated, as the questions in StackOverflow
evolve.

The eight facets and their categories used in this paper are pre-
sented in Table 1. Each facet represents a dimension of categoriza-
tion of StackOverflow questions and on each facet a question can
be categorized into one or multiple categories. Each facet except
Topic has a default category Other defined for questions that can
not be categorized into any other categories. We describe the facets
and categories bellow.

(1) Concern. This facet reflects the problems the question de-
scribes, such as, finding a software Configuration, fixing a software

Internetware ’18 , September 16, 2018, Beijing, China Mingwei Liu et al.

Error, finding Sample Code for reference, considering a Design solu-
tion of a software, finding and understanding a specific Algorithm,
etc.

(2) Language. This facet reflects the programming languages
of interest, with the most popular ones on StackOverflow being:
Java, C#, Ruby, CSS, Html, C++, C, JavaScript, PHP, Python, SQL, VB,
Matlab, etc.

(3) Operating System. This facet reflects the operating systems of
interest, with the most popular on StrackOverflow being:Windows,
Linux, iOS, OS X, Unix, Android, etc.

(4) Database. This facet reflects the database of interest, if any,
such as: MySQL, Oracle, MongoDB, SQLite, PostgreSQL, SQL-Server,
etc.

(5) Development Tool. This facet reflects the development tools
of interest, if any, such as: Eclipse, XCode, Git, Visual-Studio, Maven,
SVN, etc.

(6) Middleware and Framework. This facet captures the middle-
wares and frameworks targeted in the question, such as: Tomcat,
.NET, Django, AngularJS, Node.js, Spring, LINQ, WCF, Qt, CakePHP,
Grails, Laravel, ExtJS, Java EE, MFC, Apache, etc.

(7) Library and Software Technology. This facet refers to the
libraries and software technologies targeted by the question, such
as: jQuery, Swing, GWT, Ajax, RegEx, JSON, XML, JSP, Http, URL,
Dom, UML, Image, Video, Lucene, etc.

(8) Topic. This facet reflects the topics of the candidate questions
and it is dynamically obtained by clustering, using the titles, tags,
and the text of the questions.

The eight facets help us classify StackOverflow questions on
three dimensions, i.e.,Question Type, Question Environment and
Question Topic. The Question Type is determined based on the syn-
tactic structure of the question and the Concern facet. For now,
Question Type corresponds to the Concern categories, but we de-
cided to define it as a separate dimension, as the types of question
could include other attributes in the future. The Question Environ-
ment is determined based on the facet categories contained by the
question, corresponding to the Language, Operating System, Data-
base, Development Tool, Middleware and Framework, Library and
Software Technology facets. The Question Topics are extracted from
the Topic facet. It should be noted that these eight facets are not
orthogonal. For example, Topic information may also be reflected
on the Language facet.

All the categories for the first seven facets are determined during
preprocessing and stored in XML files, which, as we explained
before, can be updated at any time by the user.

3.3 Static Facet Analysis
Static facet analysis determines the categories of each question on
each static facet in the preprocessing phase. To this end, we first
apply linguistic analysis to parse the sentences of each question
and then match their syntactic structures against a set of syntactic
patterns to identify the categories of the question on each facet.
In addition, we also analyze the tags and code fragments of each
question to identify some of the categories.

3.3.1 Linguistic Analysis. We parse the text of each question using
a natural language parser (e.g.,Stanford CoreNLP 3 used in our
implementation) to annotate each of its sentences with POS (Part-
Of-Speech) tags. Based on the POS tags of each sentence, we identify
its syntactic structure using the reference structure bellow.

[Subject Group, Predicate Group, Object Group] [Affirmative,
Negative][Declarative, Question]

A sentence is determined to be negative if it contains a negation
word (e.g.,“not”, “no”, “none”, etc.) or if it contains a negative verb
(e.g.,“forbid”, “prohibit”, “fail”, “die”, “prevent”. etc.) in its Predicate
Group. A sentence is determined to be question if it contains a
question word (e.g.,“why”, “what”, “how”, etc.) or a question mark.

For example, the sentence “I am new to Visual Studio, I would
like to configure it.” will be parsed to the two syntactic structures
below. The Subject Group in both sentences is formed of “I ", whereas
“am new to” and “would like to configure” form the Predicate Group,
“Visual Studio” and “it” form the Object Group.

1. [I, am new to, Visual Studio] [Affirmative][Declarative]
2. [I, would like to configure, Visual Studio] [Affirmative] [Declar-

ative]

3.3.2 Syntactic Pattern Matching. Based on our initial analysis of
the StackOverflow questions, we found that most of questions that
belong to the same Question Type or Question Environment have
similar syntactic patterns. For example, programming languages
usually appear after prepositions (e.g.,“by Java”, “with Java”, etc.).
So we can define syntactic patterns for the categories of different
facets and determine the categories of a question by matching the
syntactic structures of its sentences against the syntactic patterns.

Table 2 shows the 16 templates of syntactic patterns we use in
this paper. Syntactic patterns instantiated from these templates can
describe a majority of questions in StackOverflow. As mentioned
before, these patterns can be expanded, as needed. The second,
third, and fourth columns of the table describe the template, the
facets and their categories (in the brackets) that the template applies
to, and an example a of syntactic structure that conforms to the
patterns, respectively. In the third column, an asterisk in the bracket
after a facet means that the template applies to all the categories of
the facet.

A template can be instantiated into a specific syntactic pattern
for a category of a facet by replacing the parameters (e.g.,“#Term#”)
of the template with specific terms. In the examples of Table 2
(the fourth column), the bold Italic terms represent those that are
used to replace corresponding parameters. For example, the first
template can be instantiated into a specific syntactic pattern for
Language (Java) by replacing “#Term#” with “Java”; the second
template can be instantiated into a specific syntactic pattern for
Operating System (Linux) by replacing “#Term1#” with “use” and
“#Term2#” with “Linux”.

To match syntactic structures against syntactic patterns, we need
to identify the synonyms of the terms used in the patterns. For ex-
ample, in the third example of Table 2, if we only define the pattern
for Concern (Configuration) with the term “configure”, then we can
not identify a question for configuration problems that uses the
word “set” instead of “configure”. Therefore, we created a domain

3http://nlp.stanford.edu

Searching StackOverflowQuestions with Multi-Faceted Categorization Internetware ’18 , September 16, 2018, Beijing, China
Table 2: Templates of Syntactic Patterns

Syntactic Pattern Template Facet Categories Example of Syntactic Structure

1
#T erm# appears after a preposition in the Subject Group or
Object Group

Language (*), Operating System (*), Library and Software
Technology (*), Database (*), Middleware and Framework (*),
Development Tool (*), Concern (Algorithm, implementation)

Language (Java): [I, convert a String to, an int in
Java][Affirmative][Declarative]

2
#T erm1# appears in the Predicate Group, #T erm2# appears
in theObject Group, and the sentence is affirmative and declar-
ative

Language (*), Operating System (*), Library and Software
Technology (*), Database (*), Middleware and Framework (*),
Development Tool (*), Concern (Error, Sample Code)

Operating System (Linux): [I, want to use, Linux commands in
C source code][Affirmative][Declarative]

3 #T erm# appears in the Predicate Group, and the sentence is
a question Concern (Configuration, Explanation) Concern (Configuration): [How I, do configure, tom-

cat][Affirmative][Question]

4 #T erm# appears in the Object Group, and the sentence is a
question Concern (Error, implementation) Concern (Error): [How I, can fix, the excep-

tion][Affirmative][Question]

5 #T erm# appears in the Subject Group, and the sentence is
affirmative and declarative Concern (Error) Concern (Error): [The exception, is catched in, the

block][Affirmative][Declarative]

6
#T erm1# appears in the Subject Group, andmodal #T erm2#
appears in the Predicate Group, and the sentence is a question Concern (Implementation) Concern (Implementation): [What I, can do to resolve, the con-

nection issue][Affirmative][Question]

7 #T erm# appears in the Subject Group, and the sentence is a
question Concern (Explanation) Concern (Explanation): [Why you, do create, a View in a data-

base][Affirmative][Question]

8 #T erm# appears in the Predicate Group, and the sentence is
negative Concern (Explanation) Concern (Explanation): [I, don’t understand, Application Do-

mains][Negative][Declarative]

9 #T erm# appears in theObject Group, and the sentence is neg-
ative and declarative Concern (Error) Concern (Error): [log4net, is not, work-

ing][Negative][Declarative]

10
#T erm1# appears in the Subject Group, the Predicate Group
does not contain #T erm2#, and the sentence is a question Concern (Implementation) Concern (Implementation): [How I, do remove, a submod-

ule][Affirmative][Question]

11 #T erm# appears before to infinitive in the Predicate Group,
and the sentence is a question Concern (Implementation) Concern (Implementation): [it, is right way to upload, im-

ages][Affirmative][Question]

12
#T erm1# appears before to infinitive in the Predicate Group,
the Predicate Group does not contain #T erm2#, and the sen-
tence is affirmative

Concern (Implementation) Concern (Implementation): [I, want to implement, Key Listener
on jlabel][Affirmative][Question]

13
#T erm1# appears in the Subject Group, #T erm2# appears
in the Object Group, and the sentence is a question Concern (Error) Concern (Error): [What, is, the error

here][Affirmative][Question]

14 #T erm# appears after to infinitive in the Predicate Group, and
the sentence is affirmative Concern (Configuration, Explanation), Database (*) Concern (Explanation): [I, want to understand, Android

Log][Affirmative][Declarative]

15
#T erm1# appears before to infinitive in the Predicate Group,
#T erm2# appears in the Object Group, and the sentence is
affirmative

Language (*), Operating System (*), Library and Software
Technology (*), Middleware and Framework (*), Development
Tool (*)

Language (JavaScript): [I, am new to,
javascript][Affirmative][Declarative]

16 #T erm# appears in the Subject Group or Object Group, and
the sentence is affirmative Concern (Algorithm, Design, Implementation) Concern (Algorithm): [The algorithm, is used to calculate, this

checksum][Affirmative][Declarative]

Table 3: Examples of Semantic Classes
Facet and Category Standardized Term Synonyms

- SEARCH find, search, look

- USE
use, apply, have, need, make, uti-
lize

- PRODUCE produce, create, generate
- GET get, receive, obtain

Operating System (OS X) OSX Mac, OSX, OS X

Concern (Error) ERROR
error, exception, bug, warn, de-
fect

dictionary with a set of semantic classes, each of which includes
a standardized term and its synonyms. For each parameter in a
template shown in Table 2 and for each facet and category that
the template applies to, we identified one or several most popular
terms in StackOverflow that can be used to instantiate the template
and created a semantic class with each term. For a semantic class,
we used WordNet [13] to identify candidate synonyms of its stan-
dardized term and confirmed ones were added to the semantic class.
When a new term was added, its synonyms were also identified
using WordNet and considered for inclusion. Table 3 shows some
examples of semantic classes. Some semantic classes belong to spe-
cific facets and categories. For example, the semantic class ERROR
belongs to the Error category of the Concern facet. The other ones
are generic, such as, USE and PRODUCE, which can be used for
different facets and categories.

Based on the semantic classes, we instantiated the templates in
Table 2 into syntactic patterns for specific facets and categories.
For example, the syntactic patterns for Concern (Error) are shown
in Table 4, which were instantiated from five different templates
based on the semantic classes shown in Table 2. A complete list of
semantic classes and instantiated syntactic patterns can be found in
our replication package [1]. As with the facets and facet categories,

these patterns can be easily modified and new ones can be added
by the user.

Table 4: Syntactic Patterns for Concern (Error)
Template Syntactic Pattern

2 PRODUCE orGET appears in the Predicate Group, ERROR appears in theObject Group,
and the sentence is affirmative and declarative

4 ERROR appears in the Object Group, and the sentence is question

5 ERROR appears in the Subject Group, and the sentence is affirmative and declarative

9 WORK appears in the Object Group, and the sentence is negative and declarative

13 WHAT appears in the Subject Group, ERROR appears in the Object Group, and the
sentence is question

The syntactic pattern matching is conducted in the following
way. For a category c of a facet f , all the sentences of a question q
are matched against c’s syntactic patterns. If a sentence ofqmatches
any of c’s syntactic patterns, then q is categorized into c on f . Note
that q can be categorized into multiple categories of f if q matches
the syntactic patterns of multiple categories of f . On the other
hand, if q does not match the syntactic patterns of any category of
f , then q’s category on f remains undetermined.

3.3.3 Tag and Code Analysis. In addition to the text of the ques-
tions, the tags and code fragments of StackOverflow questions are
also used for category identification on different facets. For each
category c of a facet f in Question Type or Question Environment, if
any of the terms in the semantic classes that belong to c appears in
the tags of a question q, then q is categorized into c on f . Code frag-
ments embedded in a StackOverflow question and its answers are
explicitly tagged in the StackOverflow dump. If a question has code
fragments in its text or answers, then it is categorized into Sample
Code on the Concern facet. If the code fragments of a question con-
tain the keyword “exception”, “error”, or “warn”, it is categorized
into Error on the Concern facet.

Internetware ’18 , September 16, 2018, Beijing, China Mingwei Liu et al.

3.3.4 Example. The categories of the static facets of StackOver-
flow Question 31766870 “Connect to MySQL Database Remote" are
shown in Table 5, as an example. The third column gives the pattern
that supports the categorization, which can be a syntactic pattern
instantiated from a template, or based on tags or code fragment.
The fourth column shows the instances of the corresponding pat-
tern, which can be sentences or code fragments in the text of the
question. It can be seen that a question can be categorized into more
than one categories on some facets (e.g.,Concern) or none of the
categories on some facets (categorized into Other, e.g.,Development
Tool).

3.4 Facet Extraction and Mining
The multi-faceted categorization during the interactive search is
dynamically generated based on candidate results (i.e.,questions
that are returned as results to a query). It includes two parts, i.e.,the
static facets and the Topic facet.

The categories of static facets are generated based on the cate-
gorization determined in preprocessing. For each static facet, all
the categories of it that at least one candidate result belongs to are
extracted and shown on the multi-faceted user interface.

The Topic facet is dynamically generated by clustering candidate
results and generating labels for each cluster. To this end, we treat
the title, text, and tags of each question in candidate results as a
document and normalize all the documents by removing stop words
and stemming. We then cluster the documents and each cluster
is treated as a category. The topic of each question is described
by the labels generated for the cluster they belong to. Our current
implementation uses the Lingo algorithm provided byCarrot2 4 (an
open source search results clustering engine), which can generate
readable labels to help users better choose facet categories. There
are many other techniques available for topic extraction, such as,
using Latent Dirichlet Allocation (LDA) [4], or Formal Concept
Analysis (FCA) [7]. Investigating such alternative approaches is
subject of future work.

The facets are used to filter and organize the candidate questions,
returned as results to a user query. The questions are grouped based
on their Type, Environment, and Topic. The idea is that the users
will only explore questions in one category, or at the intersection
of a few categories. When multiple categories of a facet are chosen,
the candidate questions that belong to any of them will be selected.
When the categories of multiple facets are chosen, the candidate
questions that conform to the chosen categories of all the facets
will be selected.

Within each category the questions are sorted according to rel-
evance to the search keywords. We use the sorting mechanism
provided by the integrated search engine (e.g., Apache Lucene)
with the following setting of weights on search fields: question title
has the highest weight (i.e.,3), tags have the second highest weight
(i.e.,2), and question text has the lowest weight (i.e.,1).

4 IMPLEMENTATION
We implemented a web-based StackOverflow question searching
tool based on the proposed MFISSO approach. The current imple-
mentation imported the data of the StackOverflow dump released in
4http://project.carrot2.org

January 2016, which contains 10,789,362 questions and 17,650,222
answers. It uses Apache Lucene 4.6 for indexing and keyword-
based searching, and Stanford CoreNLP V1.1.0 for natural language
processing.

In keyword-based searching, MFISSO filters out all the stop
words in the keyword-based query given by the user and then
uses all the other keywords for searching with Lucene’s searching
APIs. Based on the results returned by Lucene, the tool filters out
the questions that have no answers or whose scores are lower
than 0. Then the tool chooses a number of top-ranked candidate
questions for facet extraction and mining. For example, in our
experimental study we chose to return 200 top-ranked questions
for facet extraction and mining.

The MFISSO tool has a typical multi-facet search UI, as shown
in Figure 2. The three main areas in the UI are Search Panel, Result
List, and Facet Panel.

To search StackOverflow questions, a developer can input an
initial set of keywords in the Search Panel and then click the Search
button to start the search process. The returned candidate questions
are sorted and displayed in the Result List. The title, text, tags, and
three top-rated answers of each question are shown on the UI.
The keywords in the query are highlighted in the text of each
question. Embedded code fragments are shrunk and can be shown
by clicking the Code buttons in the text or answers of a question.
Clicking the title of a question will open the page of the question
on StackOverflow site.

The Facet panel shows all the facets and categories generated for
the current candidate questions. Categories of a facet are displayed
as a tree with descriptive labels. The number after the label of each
category shows the number of candidate questions involved in the
category. The developer can select or unselect categories of differ-
ent facets by clicking the checkboxes next to the category’s label.
Each time after the selected categories are changed, the Result List
is updated with candidate questions that conform to the selected
categories for preview. If the developer decides to refine the results
with the selected categories, she can click the Update button be-
low the facets. After that, the candidate questions are refined and
the categories of all the facets are updated based on the refined
candidate questions.

We provide a feedback mechanism for the developers using our
tool. During or after a searching, the developer can click the Suggest
button in the Search Panel and provide her feedback of the tool.

5 EVALUATION
The aim of our approach is improving StackOverflow search using
multi-facets. In order to assess whether our approach achieves its
goal, we implemented MFISSO, as described in the previous section
and conducted an empirical evaluation, for answering the following
research question:

RQ Does MFISSO improve the search in StackOverflow?

We performed two related empirical studies in order to answer
our research question: (1) a controlled experiment where subjects
solved a set of programming tasks using MFISSO and the Stack-
Overflow search feature; and (2) an analytical comparison of the
retrieval performance of MFISSO and the StackOverflow search.

Searching StackOverflowQuestions with Multi-Faceted Categorization Internetware ’18 , September 16, 2018, Beijing, China

Table 5: Categories of Static Facets of StackOverflow Question 31766870 “Connect to MySQL Database Remote"
Facet Category Pattern Instance

Concern Implementation Template 6 What other things do I need to do to connect?
Sample Code Code Fragment Code Fragment

Language Java Template 1 Then in the Java application (that utilizes the MySQL database) I did
jdbc:mysql://public_ip:3306/database_name

Operating System Windows Template 2 I also commented out bind-address in the my.ini file (I have windows)

Database MySQL Template 2, Tag 1. I have aMySQL database on another computer
2. that utilizes the MySQL database

Development Tool Other - -
Middleware and Framework Other - -

Library and Software Technology URL Template 1 I used my public ip address in the jdbc url

Figure 2: Layout of MFISSO Tool
5.1 Controlled Experiment
5.1.1 Experiment Design. The object of the study was to solve 10
programming tasks by finding the relevant solutions on StackOver-
flow. The tasks were defined by two of the authors and range in
difficulty. For example, one of the easier tasks is “How to display
a tree structure using JSP.", whereas one of the more difficult tasks
is “I am using Eclipse to develop a web project in Linux. How to con-
figure Tomcat in Eclipse." The ten tasks are of different type, such
as, debugging task, tool configuration task, algorithm task, imple-
mentation task, etc.All ten tasks are described in our replication
package [1].

The subjects of the study are 20 students from the School of
Computer Science at Fudan University - six undergraduates, eleven
masters, and three PhD level. The subjects received a USB-memory
stick or a mug, upon participation in the experiment.

The dependent variable is the tool usage, which has two levels:
MFISSO and StackOverflow search.

The independent variables are: correctness (i.e.,a measure of ef-
fectiveness) and completion time (i.e.,a measure of efficiency).

The controlled variables are the task difficulty and subject experi-
ence. Task difficulty has four levels: very easy, easy, hard, very hard.
These values are relative to each other and were assigned to the
ten tasks by two of the authors, based on their experience. The ten
tasks were divided into two groups P1 and P2, such that each group
had one very easy task, two easy tasks, one hard task, and one very
hard task.

Prior to the selection of the subjects, we asked them to complete
a pre-experiment survey about their experience. The survey and
the answers are available in our replication package [1]. In order
to control the subject experience, we divided the subjects in two
groups of ten subjects each, S1 and S2, using a randomized block
design, with the experience as the blocking factor. Group S1 had
eight subjects with the Experienced level and two subjects with the
Novice level. Group S2 had one subject with the Expert level, six
subjects with the Experienced level, and three subjects with the
Novice level.

We chose a within-subject design and used counterbalancing not
to confound the order in which a task is performed with the exper-
imental treatment. So we defined four treatments as follows: T1 -
MFISSO+P1; T2 - MFISSO+P2; T3 - SO+P1; T4 - SO+P2. Then we
assigned S1 to T1 and T4 and S2 to T2 and T3, meaning that each
group of subjects performed all tasks (P1+P2) and used MFISSO for
half the tasks (P1 or P2) and the StackOverflow search for the other
half. Since the ten tasks are independent, we did not anticipate any
learning effect, which allowed us to employ a within-subject design.
Since each subject used both search tools, we were able to ask them
to compare the use of the tools via a post-experiment survey.

A pilot study was done with two participants, which helped us in
better assessing the difficulty of the ten tasks and the approximate
time it takes to answer them. The actual study was carried out
during two days. During day one, the subjects participated in a 30
minutes tutorial on how to use MFISSO. They were given time after

Internetware ’18 , September 16, 2018, Beijing, China Mingwei Liu et al.

the tutorial to use the tool freely. The second day, the subjects were
shown a 10 minutes demo of MFISSO to remind them how to use it.
After that, they answered the tasks, one by one. They were given
maximum 15 minutes per question, for a total not to exceed 150
minutes, in order to eliminate fatigue. Each subject had to answer
all five questions in P1 or P2, before answering the other five, using
the tools assigned to them via the treatment design. Two of the
authors were present during the session in order to answer any
questions of the subjects and to observe that they are using the
proper tool to answer the proper questions.

In order to answer our research question, we studied the effect
of the dependent variable (i.e.,tool usage) on the independent vari-
ables (i.e.,correctness and completion time). We formulated two null
hypothesis and their alternatives, for each variable, see Table 6.

5.1.2 Data Collection. During the session each subject ran a screen
capture software on their workstation. The screen captures were
later analyzed to determine the exact time it took each subject to
answer each question, as well as to record the queries they issued
and the facets they selected when usingMFISSO. Timewas collected
and reported in seconds. For each task, the subjects spend some
time on understanding the task and then they started searching
for StackOverflow questions. The time it took them to solve a task
was considered since the moment they started searching until they
write the final answer. The time it took them to understand the
tasks was not considered.

For each task, the subjects reported the StackOverflow question
and answer, which has the best solution for the task. The set of
correct solutions was identified based on the pilot study. Note that
for some of the tasks, the complete solution required combining
elements from answers to more than one question. As with any
programming task, there are always more than one correct solution.
So, in the cases where the subject’s answer did not match one of the
previously identified correct solutions, two of the authors assessed
the proposed solution for correctness. These are the two authors
that formulated the tasks and are experts in solving each task. For
each reported solution answer the subjects received a score of ‘0’ if
their answer was incorrect or ‘1’ if their answer was correct. If the
answer was not correct but can help to solve the problem, it was
considered partially correct (i.e.,scored ‘0.5’). In the cases where
the solution was formed from several elements (two in our tasks),
the answer was also considered partially correct (i.e.,scored ‘0.5’) if
only one element of the solution was correctly identified.

In the end, each participant solved ten tasks, five with each tool,
hence each task was solved by two subjects, each using a different
tool (i.e.,SO and MFISSO).

At the end of the session, each subject completed a survey, to
provide feedback about the perceived difficulty of their tasks, chal-
lenges or difficulties in the process, their experience with the tools,
and suggestions for the improvement of MFISSO.

5.1.3 Results. Our choice of single-factor, within-subject design
for our experiment and the formulation of the null hypothesis two-
tailed alternatives, suggested that the suitable parametric test for
hypothesis testing is a two-sample t-test. We minimize the chance
of type-I errors, as we compare only two groups (i.e.,using MFISSO
vs StackOverflow).

Figure 3: Performance Comparison of SO and MFISSO
As a precondition for the test we checked for the normality of

the dependent variables, completion time and correctness, with
respect to the two level of tool, using the k-s test for normality. The
test indicated that the normality assumption is met.

We also tested our data for homogeneity of both correctness
and completion time, using ANOVA test and in both cases the
assumption was met.

Table 7 and Figure 3 present the descriptive statistics of the
aggregated correctness and completion time results for each level
of the tool variable.

The effect of MFISSO on search time. MFISSO has significantly
impact on the completion time, p=0.001. In average,MFISSO allowed
subjects to solve the tasks 35% faster (1,474.5 seconds vs. 2,256.75
seconds). Remember that the subjects solved five tasks with each
tool.

The effect of MFISSO on answer correctness. As in the case of
completion time, MFISSO has significantly impact on the accu-
racy, p=0.028. In average, when using MFISSO subjects accurately
solved 3.85 questions compared to 2.95 when using StackOverflow.
Remember that the subjects solved five tasks with each tool.

We expected somewhat higher correctness, so we investigated
the correctness results deeper. The easier questions were answered
typically well by the subjects, regardless whether they usedMFISSO
or StackOverflow. For example, all 20 participants answered cor-
rectly the first question in group P1. However, for some difficult
questions, such as the fifth question in group P1 and the fourth
question in group P2, participants who use MFISSO were able to
perform better than those using StackOverflow. For half of the par-
ticipants these questions were answered towards the end of the
experiment, regardless of the tool they used. As it happens, using
MFISSO to answer these questions yielded a substantial gain in
time, over StackOverflow. Hence, we believe that, given the level of
fatigue towards the end of the experiment, MFISSO’s assistance in
saving time, helped the subjects answer better these answers. When
it comes to the third question of P2, participants performed weak
no matter which tool they used. Participants using MFISSO only
have the correctness at 4.5 out of 10, and those using StackOver-
flow had the correctness at 5/10. We concluded that this situation
occurred because some of the subjects are not familiar with how
to parse Java code although they know well about Java. One par-
ticipant stood out, as he answered only one correct answer when
dealing with questions in group P1 and had three correct answers
when dealing with questions in group P2, using MFISSO. When
investigating his recording, we observed that he barely used the

Searching StackOverflowQuestions with Multi-Faceted Categorization Internetware ’18 , September 16, 2018, Beijing, China

Table 6: Null and Alternative Hypotheses
Null hypothesis Alternative hypothesis

HT0: The tool usage does not impact the time required to complete the tasks. HT1: The tool usage impacts the time required to complete the tasks.
HC0: The tool usage does not impact the correctness of the solutions to the tasks. HC1: The tool usage impacts the correctness of the solutions to the tasks.

Table 7: Results Statistics

avg min max median standard dev. T-Test
T p

Completion time MFISSO 1,474.5 962 2,224 1316 378.38 -4.061 0.001StackOverflow 2,256.75 1,390 3,417 2,095 677.27

Answer correctness MFISSO 3.8 1 5 4 0.90 2.37 0.028StackOverflow 2.95 1 5 3 1.05
facets. Still, we decided to consider his answers valid, rather than
accidental outliers.

5.1.4 User Experience. The post-study survey included questions
about the experience of the subject with MFISSO. Eighteen (90%)
participants strongly agree (10) or agree (8) that they will use
MFISSO frequently in the future. Nineteen (95%) participants strongly
agree (9) or agree (10) that the tool is easy to use. An example of
comment in the free form answers is: “This tool is easy enough to
use with clear and simple classification”. Only one participant was
not sure on how easy the tool is to use and said that “Facets are
a little bit too many”. All of them disagree when asked whether
one needs to learn a lot before one could effectively use this search
tool. When asked why, one of them said that “The tool is easy to
use since its similar to the filter tool of online shopping websites” and
another commented that “Anyone who is familiar with a search en-
gine should get started quickly, because it is designed in a same way”.
Most importantly, they also thought MFISSO helped them more
than just StackOverflow (10 strongly agreed and 10 agreed). One
participant said that “StackOverflow search engine is not very good, I
can get better result with less time with the tool”, while another one
said that “The search engine of SO is really bad, I used to use Google
to retrieve related questions on SO instead”. These answers support
our initial motivation for developing MFISSO. The participants also
gave some suggestions on improving MFISSO. For example, some-
one wanted to “add more facets in order to be utilized by diverse
kinds of developers” and someone hoped that a “more beautiful UI
could make MFISSO become more popular among users”. Overall, the
participants were pleased with the use and performance of MFISSO.

5.2 Analytical Study
To complement the controlled experiment, we performed an addi-
tional analytical evaluation, comparing the retrieval effectiveness
of MFISSO and StackOverflow. This type of evaluation is common
in applications of information retrieval in software engineering [5].

The objects of the study are the queries formulated by the sub-
jects in order to solve the ten tasks during the controlled experi-
ments. We extracted the first query issued by each subject for each
task, using the captured videos from the experiment. Some sub-
jects used identical queries for the same tasks. After removing the
duplicate queries, we had 134 queries left.

In order to answer the research question, we measure the effec-
tiveness of the retrieval [17] (i.e.,the location of the first relevant
question in the set of retrieved results). This measure is commonly
used in IR-based feature location applications [11]. One of the au-
thors ran all the 134 queries to compute the effectiveness. In the case

Table 8: The Effectiveness Analysis for The 134 Queries
Queries Effectiveness SO Effectiveness MFISSO

134 Retrieved Min Med Avg Max Retrieved Min Med Avg
77 1 5 12.33 98 105 1 1 1.33

of StackOverflow, the effectiveness was measured by locating the
relevant question in the list of results returned by the StackOverflow
search engine. In the case of MFISSO, the location was retrieved
within the facet where the relevant question was categorized.

Table 8 shows the results of the effectiveness analysis for the
134 queries. Some queries did not retrieve the relevant question,
57 (42.5%) for StackOverflow and 29 (21.6%) for MFISSO. The av-
erage/median effectiveness for MFISSO are much lower than for
StackOverflow (1.33/1 vs. 12.33/5), which means that using MFISSO
the relevant question is, on average, in the top 1.33 results in the
facet (1 median), whereas for StackOverflow, the relevant question
is on position 12.33, on average (5 median).

These results support the findings of the controlled experiment
with respect to time, as we can expect that relevant questions lo-
cated closer to the top of the results list should be found faster.

5.3 Threats to Validity
5.3.1 Internal validity. We conducted the pre-experiment survey
to ensure that the subjects have enough knowledge to complete
the ten tasks. In addition, we used their self-assessed expertise
information to balance the two groups, although our choice of
within-subject design mitigates partially the effect of the expertise.
In order to ensure that the subjects are familiar enough with using
MFISSO and StackOverflow, we provided the tutorial and training
on using the tools on day 1 before the experiment, and provided
a ten minutes demo before starting the experiment. While we did
not expect any learning effect between solving the ten tasks, we
counterbalanced the treatments to mitigate the effect of fatigue. We
expected that the subject will be more tired while answering the
final few questions, hence potentially impacting their performance.
While the subjects received small gifts for participation, there was
little incentive for them to perform, except for the fact that they
were observed by two of the authors.

The ten tasks were designed by the authors and, thus, there
could exist some bias towards MFISSO because this tool was also
designed by the authors. To mitigate this potential bias, we selected
tasks that ranged in type and difficulty. 80% of the subjects rated the
tasks overall as ”moderate” in the post-experiment survey and only
one thought they were “Hard”, which indicates that the tasks were
neither trivial nor too difficult. The difficulty level was assessed
by two of the authors, so it is somewhat subjective. Yet, we do not
have means to asses the difficulty more objectively for such tasks.
We defined the two group of question, P1 and P2, to balance the

Internetware ’18 , September 16, 2018, Beijing, China Mingwei Liu et al.

difficulty. We aggregated and analyzed the time and correctness
for each group of tasks. It took, in average, 2,077 seconds for the
subjects to solve the tasks in P1 and 1,642 seconds to solve the
tasks in P2. At the same time, the subjects answered correctly 2.9
question from P1, in average, and 3.9 answers from P2, in average.
This analysis indicates that the questions in P2 were somewhat
easier than the ones in P1, despite the fact that they were rated the
same (as a group) by the authors.

5.3.2 External validity. The twenty participants were all students,
including six undergraduates, eleven master students and three
doctoral students. While their experience and background are some-
what varied, they are hardly a representative sample for the soft-
ware developers community. However, we have no reason to believe
that the results with professional programmers would be any dif-
ferent. In future work, we will include professional developers as
well, in subsequent experiments.

MFISSO’s implementation only considered the eight facets men-
tioned in the paper with a limited number of categories. Clearly
not all type of questions can be categorized by the facets we used.
However, we believe that including additional facets and categories
would make MFISSO even more efficient and effective to use.

The ten tasks certainly do not cover all types of tasks that devel-
opers use StackOverflow for, but they were developed based on the
authors’ past experiences in using StackOverflow.

6 CONCLUSIONS AND FUTUREWORK
We hypothesized that categorizing the StackOverflow question
based on their attributes will help developer retrieve relevant ques-
tions and answers more effectively and efficiently. Our approach,
MFISSO, extracts the concern, environment, and topics of ques-
tions, and provides a multi-faceted categorization for StackOver-
flow questions that allows interactive and iterative refinement of
search results. A controlled experiment with 20 subjects solving ten
programming tasks revealed that they solved the tasks faster and
more accurately than using the StackOverflow search. An analytical
evaluation of 134 user queries also indicated that relevant questions
can be retrieved faster with MFISSO than with the StackOverflow
search.

The improved retrieval is achieved with only the use of eight
facets.We expect that extending the number of facets and categories
in each facet will yield even better retrieval. Part of our future work
is to extend the categories and facets. Further refinement of the
syntactic patterns is also envisioned.

While we used tasks of several types in the controlled experiment,
we did not study the impact of the task type on the effectiveness and
efficiency of retrieval with or without MFISSO. A different study
would be needed for that and we plan to do it in the future.

Our approach can be instantiated to be used with other Question-
Answer sites, by redefining the facets and categories, and some of
the syntactic patterns. Future work will expand to applications
beyond StackOverflow.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2016YFB1000801 and the
Shanghai Science and TechnologyDevelopment Fund (16JC1400801).

REFERENCES
[1] 2018. MFISSO Replication Package. http://www.se.fudan.edu.cn/research/

SOSearch
[2] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are

developers talking about? An analysis of topics and trends in Stack Overflow.
Empirical Software Engineering 19, 3 (2014), 619–654.

[3] Blerina Bazelli, Abram Hindle, and Eleni Stroulia. 2013. On the Personality
Traits of StackOverflow Users. In 2013 IEEE International Conference on Software
Maintenance. 460–463.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3 (2003), 993–1022.

[5] Jane Cleland-Huang, Olly Gotel, and Andrea Zisman (Eds.). 2012. Software and
Systems Traceability.

[6] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95.

[7] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. 2005. Formal concept analysis:
foundations and applications. Vol. 3626.

[8] Latifa Guerrouj, David Bourque, and Peter C. Rigby. 2015. Leveraging Informal
Documentation to Summarize Classes and Methods in Context. In 37th IEEE/ACM
International Conference on Software Engineering. 639–642.

[9] Marti A. Hearst. 2006. Clustering versus faceted categories for information
exploration. Commun. ACM 49, 4 (2006), 59–61.

[10] Hongwei Li, Xuejiao Zhao, Zhenchang Xing, Lingfeng Bao, Xin Peng, Dongjing
Gao, and Wenyun Zhao. 2015. amAssist: In-IDE ambient search of online pro-
gramming resources. In 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering. 390–398.

[11] Andrian Marcus and Sonia Haiduc. 2011. Text Retrieval Approaches for Concept
Location in Source Code. In Software Engineering - International Summer Schools.
126–158.

[12] Collin McMillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu.
2013. Portfolio: Searching for relevant functions and their usages in millions of
lines of code. ACM Trans. Softw. Eng. Methodol. 22, 4 (2013), 37:1–37:30.

[13] George Miller. 1998. WordNet: An electronic lexical database. MIT press.
[14] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What

makes a good code example?: A study of programming Q&A in StackOverflow.
In 28th IEEE International Conference on Software Maintenance. 25–34.

[15] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. In 11th Working Conference on Mining Software Reposito-
ries. 102–111.

[16] Denys Poshyvanyk, Malcom Gethers, and Andrian Marcus. 2012. Concept loca-
tion using formal concept analysis and information retrieval. ACM Trans. Softw.
Eng. Methodol. 21, 4 (2012), 23:1–23:34.

[17] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Václav Rajlich. 2007. Feature Location Using Probabilistic Ranking of Meth-
ods Based on Execution Scenarios and Information Retrieval. IEEE Trans. Software
Eng. 33, 6 (2007), 420–432.

[18] Denys Poshyvanyk and Andrian Marcus. 2007. Combining Formal Concept
Analysis with Information Retrieval for Concept Location in Source Code. In
15th International Conference on Program Comprehension. 37–48.

[19] Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K. Roy. 2014.
Towards a context-aware IDE-based meta search engine for recommendation
about programming errors and exceptions. In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering.
194–203.

[20] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. Improv-
ing feature location practice with multi-faceted interactive exploration. In 35th
International Conference on Software Engineering. 762–771.

[21] Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. An empirical study on
developer interactions in StackOverflow. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing. 1019–1024.

[22] Wei Wang, Haroon Malik, and Michael W. Godfrey. 2015. Recommending Posts
concerning API Issues in Developer Q&A Sites. In 12th IEEE/ACM Working
Conference on Mining Software Repositories. 224–234.

http://www.se.fudan.edu.cn/research/SOSearch
http://www.se.fudan.edu.cn/research/SOSearch

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Overview
	3.2 Facets Definition
	3.3 Static Facet Analysis
	3.4 Facet Extraction and Mining

	4 Implementation
	5 Evaluation
	5.1 Controlled Experiment
	5.2 Analytical Study
	5.3 Threats to Validity

	6 Conclusions and Future Work
	Acknowledgments
	References

